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Over eighty percent of world energy supply is estimated to 

be provided by burning fossil fuels for the next 30 years [1], 

and this imposes more and more stringent environmental 

regulations on the design of combustion related devices. 

Direct numerical simulations (DNS) have played important 

roles in the research of turbulent combustion. DNS data base 

provide key information for the development of turbulent 

combustion models, which are to be used in computational 

fluid dynamics (CFD) of various combustion devices during 

design and development phases.

 For decades, DNS have been used for canonical 

combustion problems such as statistically 1D planar 

propagating premixed flames and HCCI-type combustion 

in a periodic rectangular domain. However, with the recent 

advancement in high-performance computing, DNS of slightly-

more complicated and computationally costly combustion 

configurations such as V-flame, jet flame and flames stabilized 

in jet-in-cross-flow and swirl flow with using complex chemical 

mechanisms have been performed, and such simulations 

will further our understanding on the physics of turbulent 

combustion. Since these configurations include walls that do 

not necessarily conform with the preferred structured mesh 

coordinates for combustion DNS, most of these simulations 

use presumed profiles for inflow/near-wall flows as boundary 

conditions. A portable high-order immersed boundary method 

suited for parallel computation is one way to improve these 

simulations. Also, the use of more practical and complicated 

hydrocarbon fuels such as methane, n-heptane and gasoline 

surrogates with complex chemical kinetic models is important 

to reveal underlying flame —turbulence interaction that is 

a key for the development of “green” combustor. However, 

computing elementary reaction rates existing in chemical 

mechanisms takes most of combustion DNS costs and a 

method to improve this computation speed is necessary 

to achieve such DNS. The present research implements 

such a boundary technique and methods to accelerate 

kinetic computation in a DNS code, TTX, and simulations are 

performed to confirm its accuracy and performance for several 

laminar/turbulent reacting/non-reacting flow problems.
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TTX : A Direct Numerical Simulation Code 
for Turbulent Reacting Flows

Over eighty percent of world energy supply is estimated to be provided by burning fossil fuels for the next 
30 years, and this imposes more and more stringent environmental regulations on the design of combustion 
related devices. Direct numerical simulations (DNS) have played important roles in the research of turbulent 
combustion. DNS data base provide key information for the development of turbulent combustion models, 
which are to be used in computational fluid dynamics (CFD) of various combustion devices during design and 
development phases. This article summarises a DNS code and implemented numerical techniques that are 
developed at Tokyo Institute of Technology.
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2.1  Governing equations and PDE solver

The governing equations consist of fully compressible 

conservation equations for mass, momentum, energy and 

mass fractions of N -1 chemical species, where N is the number 

of chemical species involved in combustion. The equations 

are discretised by a fourth order central finite difference 

scheme and integrated in time by using a third order 

explicit Runge-Kutta scheme on Cartesian mesh. Unphysical 

numerical oscillations resulted from the use of finite difference 

scheme are removed by using either a sixth order explicit 

spatial filtering or a fourth order compact filter. All open 

computational boundaries are described

based on the Navier-Stokes characteristic boundary conditions 

(NSCBC) formulation. The detailed description can be found in 

previous studies [2-6].

2.2  MTS and CODACT

One of the difficulties in conducting combustion DNS is the 

time integration of the governing equations with chemical 

reaction terms. The time stepping (Δt ) for fully explicit 
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schemes has to be smaller than the smallest chemical 

timescale which can become much smaller than the time 

stepping limited by a CFL condition. MTS (multi-timescale) 

method [7] is an algorithm for integrating ODEs associated with 

chemical reaction using a large Δt . In MTS method, each 

chemical species (Yk ) belongs to one integration group based 

on its chemical timescale (τk ). The index (M ) of an integration 

group which Yk  belongs to is obtained as 

M = log10 (Δt /τk ) + 1. Species in M th group are integrated 

using a time stepping Δt M = Δt /10 (M-1). The integration 

procedure starts with the smallest Δt M. After convergence of 

M th group, the mass fractions of the species in the group are 

fixed and then the ODE system continues to be integrated 

using Δt M-1. Thus, MTS enables us to use a large Δt , which is 

not limited by the smallest chemical timescale, as a global 

time stepping for DNS.

 Another approach to reducing computational cost 

is reduction of the reaction ODE system. CODAC (correlated 

dynamic adaptive chemistry) [8] is one of the methods for 

dynamically generating reduced kinetic mechanisms at each 

spatial location and each time step. In CODAC method,

a phase space consisting of a few key parameters is 

constructed. Temperature and mass fractions of fuel, oxidizer 

and important radicals are selected as the key parameters. 

Comparing the instantaneous phase parameters at a grid 

point with those at another reference point (different point in 

time/space), correlation between the two points in the phase 

space is examined. Threshold values used for examining the 

correlation are specified by a user. If the phase parameters at 

the two points are correlated, the reduced mechanism used at 

the reference point is reused at the correlated grid point. If the 

phase parameters at a grid point are not correlated with any 

other reference point, a new reduced mechanism needs to be 

generated by PFA (path flux analysis) [9].

 Further reduction of computational cost is achieved 

by using CODACT (CODAC and transport) [10]. The same 

correlation procedure in CODAC is applied to reducing the 

computation of

transport properties, i.e. viscosity, diffusivity and thermal 

conductivity. The phase parameters for reducing transport 

calculation are temperature and molar fractions of the first 

several abundant species. As with CODAC, transport properties 

at a grid point are not calculated if the phase parameters at 

the point are correlated with those at a different grid point.

2.3  Immersed boundary method

The present immersed boundary method (IBM) is based on 

well-known ghost region/reverse profile approach [11] with 

some modification to achieve high accuracy and portability. 

The important change from the conventional ghost region 

approach is that the ghost points are identified not only from 

the non-fluid points that face to the fluid region, but the 

region has certain non-fluid mesh points in the wall normal 

directions. The points width in wall normal direction is max ( nd, 

nf /2) for uniform one-dimensional configuration, where 

nd and nf  are the order of differentiation and explicit filter, 

respectively. Figure 1 shows an example schematic of ghost 

region for a nd  = 4 and  nf  = 6 case. Once the ghost points are 

identified, a reference point is identified for each ghost point:

where the three     vectors denote the locations of reference 

point, corresponding wall and ghost point, respectively. For 

each physical quantity,     , solved in the set of governing 

equations, the reference value is obtained by interpolating the 

field onto the reference point. Using the reference point, the 

value at each ghost point is estimated depending on the wall 

conditions as:

Here, Eq. (2) is used for Dirichlet, and Eq. (3) is for Neumann 

wall boundary conditions. In the present implementation, 

ghost values for velocity and temperature are obtained by 

using Eq. (2), while species mass fractions and pressure are 

treated with Eq. (3). The density values on ghost points are 

obtained using a combination of Eqs. (2) and (3) to achieve 

mass conservation.

Fig. 1   Schematic of DNS domain. Blue shade  
 indicates identified ghost region.
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3.1  MTS and CODACT

A typical computational performance is shown in Fig. 2 in 

terms of weak scaling. The used DNS configuration is a periodic 

cuboid domain without using MTS, CODACT and IBM. The 

domain was initially filled with a reactant mixture of CH4 - air 

preheated to 1000 K at 1 atm. The chemical reactions are 

described by using GRI-3.0 mechanism. The mixture is then 

ignited at the centre location by gradually imposing an energy 

source term having a profile based on a Gaussian distribution. 

Each CPU core are allotted 12 3 mesh points and simulations 

were continued for the first 100 time steps. Clearly, TTX has 

excellent parallel computation performance for a range of 

number of cores. 

 A comparison between explicit time integration 

without CODACT (i), time integration using MTS without 

CODACT (ii) and time integration using MTS and CODACT (iii) 

is shown in Fig. 3 for a homogeneous ignition simulation of 

methane-air combustion. The time stepping for these cases 

are set to be Δt  =1ns (i), 5ns (ii) and 5ns (iii). Smaller Δt  for 

the case (i) is necessary as chemical time scales typically 

decreases rapidly with pressure rise. In Fig. 3, the temperature 

profiles show identical variation except for the explicit case 

(i) which starts to show a deviation after t =0.5ms. This is due 

to the lack of temporal resolution (Δt ) since the chemical 

time scales are typically shortened as pressure increases with 

ignition proceeds. Thus, without the aid of MTS, Δt  needs to 

be set significantly smaller values than other cases. However, 

the use of CODACT does not influence the results. Figure 4 

shows accumulated computational times for the cases (i) —

(iii). Clearly, due to significantly small Δt , the computational 

time for the case (i) takes longest of all. Clearly, the use of MTS 

and CODACT decreases computational by a factor of 7—8 

times for complex chemistry. Similar trends are observed for 

more complex fuel combustion mechanism such as n-heptane.

3.2  Immersed boundary method

To access developed IBM, non-reacting laminar Taylor-Couette 

flows are simulated. The inner and outer walls are described 

based on the present IBM, and the DNS solutions at different 

spatial resolutions are compared with the analytical solution. 

The error convergence plot is shown in Fig. 5 in terms of 

maximum and L 2 norm of relative errors. The convergence 

Fig. 2   Weak scaling plot of combustion DNS 
 in a typical configuration using TTX.

Fig. 3   Comparison of temperature profiles 
 between the cases (i)—(iii). 
 Red: case (i), 
 black dashed: case (ii), 
 black solid: case (iii).

Fig. 4   Comparison of accumulated computational 
 costs between the cases (i)—(iii). 
 Red: case (i), black dashed: case (ii), 
 black solid: case (iii).
 black dashed: case (ii), black solid: case (iii).

Performance and Accuracy 3
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rate of  L 2 norm decreases at a rate of between third and 

fourth orders, and this is comparable with the accuracy of 

differentiation in the interior points in the present DNS.

evolve from a current relatively small, canonical configuration 

to a larger scale, more complex geometry that is more relevant 

to practical combustion devices.

 DNS of a turbulent pipe flow is performed. The 

present pipe wall boundary conditions are specified as in the 

developed IBM, whereas previous pipe flow DNS database 

applied structured mesh that represent the pipe shape. The 

initial nominal Reynolds number Reτ is set as 200, which is 

defined based on the friction velocity and radius of the pipe. 

The dimensions of the pipe are shown in Fig. 6 with the 

DNS result for the streamwise velocity field. The simulation 

was continued for over 40 mean-flow-through times to 

achieve quasi-steady state and samples are collected after 25 

mean-flow-through times for statistics. Turbulent statistics 

are compared with previous DNS with conventional wall 

boundary method for mean streamwise velocity and Reynolds 

shear stress (not shown) in Fig. 7. The present pipe flow DNS 

results show excellent agreement with the previous DNS 

results with Reτ =180 and 181, ensuring that the present IBM 

can capture the large velocity gradient and reproduce the 

turbulent boundary layer accurately. Also, the computational 

cost per time step is 1020 ms with IBM and when IBM is 

switched off, it decreases to 950 ms with 1296 cores at 

Reedbush-U system at the University of Tokyo. Therefore, the 

additional computational cost due to the IBM is less than 10% 

of the overall cost. 

3.3  3D Turbulent combustion simulations

Typical DNS results of three-dimensional turbulent combustion 

performed by using TTX is shown in Fig. 8. With the numerical 

techniques described here, the turbulent combustion DNS will 

Fig. 5   Error convergence plot of the present IBM 
 obtained from a laminar Taylor-Couette DNS.

Fig. 8   Typical combustion DNS results of swirl 
 flow stabilised turbulent flames of hydrogen-
 air combustion. Iso-surfaces: heat release rate. 
 Color: normalised temperature. Left: low swirl 
 number (0.6) case. 
 Right: high swirl number (1.2) case

Fig. 7   Comparison of the mean streamwise velocity 
 profile of the pipe flow DNS.

Fig. 6   Configuration and streamwise velocity field 
 of turbulent pipe flow DNS.
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timescale and correlated dynamic adaptive chemistry 

modeling of ignition and flame propagation using a real 

jet fuel surrogate model, Combust. Flame, Vol. 162, pp. 

1530-1539 (2015)

[9] W. Sun, Z. Chen, X. Gou and Y. Ju: A path flux analysis 
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mechanisms, Combust. Flame, Vol. 157, pp. 1298-1307 
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A direct numerical simulation code, TTX, is developed by 

implementing MTS, CODACT and IBM capability for better 

computational speed and relatively flexible boundary 

configurations. The computational speed is increased by 

a factor of 7 to 8 when DNS are performed with both MTS 

and CODACT for a complex chemical mechanism, while the 

implemented IBM shows comparable accuracy to the accuracy 

of present numerical schemes. 
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In many scientific and engineering simulations, Partial 

Differential Equations (PDEs) are solved in a uniform mesh 

arrangement by using finite difference schemes, referred to 

as iterative stencils. Typically, the resolution of the mesh is 

uniformly set to the highest resolution to provide accurate 

solutions. For meshes that require only high resolution for 

some portions of the mesh, an alternative method, known 

as Adaptive Mesh Refinement (AMR), can be used instead of 

the uniform mesh. The AMR method solves the problem on 

a relatively coarse grid, and dynamically refines it in regions 

requiring higher resolution. However, AMR codes tend to be 

far more complicated than their uniform mesh counterparts 

due to the software infrastructure necessary to dynamically 

manage the hierarchical mesh framework. Despite this 

complexity, it is generally believed that future applications will 

increasingly rely on adaptive methods to study problems at 

unprecedented scale and resolution.

 Implementing efficient adaptive meshes in GPU-

accelerated systems is significantly hard in comparison 

to traditional CPU systems. More specifically, GPUs add 

complexity overhead for managing the mesh hierarchy and 

optimization of data movement. This is made evident by the 

relatively wide use of AMR in CPU in comparison to GPU-based 

systems. For example, a mature AMR framework supporting 

CPU, namely FLASH is reported to be in use by dozens of 

production applications[1]. On the contrary, a few number of 

individual applications adapted AMR solvers for GPU, with 

varying levels of optimization and scaling. To summarize 

the problems with GPU-based AMR, only a few frameworks 

enable automated AMR transformations for GPU, and their 

programming models require the programmer to write his 

Structured AMR methods use logically rectangular meshes in 

the implementation of the adaptive mesh. Structured AMR 

utilizes a hierarchy of levels of spatial, and often temporal, 

mesh spacing with each level being composed of a union 

of logically rectangular mesh regions. One way to represent 

the structured AMR, namely tree-based AMR, divides the 

discretized domain into fixed blocks. If any cell within a block 

requires refinement, the whole block is refined.

 In the tree-based scheme, the mesh is organized 

into a hierarchy of refinement levels. The mesh is usually 

decomposed into relatively small fixed-sized octants of 

mesh cells. Each octant can be recursively refined into a set 

of octants of fine cells. The mesh configuration is managed 

using a tree-based data structure that maintains explicit child- 

parent relationships between coarse and fine octants. Size 

relations between neighboring octants are typically enforced 

in structured AMR, which means neighboring octants can 

have at most one level of refinement difference (referred to 

as 2:1 balance). An important feature of octrees is that the 

traversal of an octree across its leaves corresponds to a Morton 

z-shaped Space Filling Curve (SFC) in the geometric domain[4]. 

Accordingly, sorting the blocks by their Morton ID and equally 

own versions of the target-optimized solvers. Moreover, there 

can be scalability limitations caused by the overhead of the 

CPU-GPU communication schemes in those frameworks[2].

 In this article, we present a high-level framework, 

called Daino[3], which auto-generates efficient and scalable 

structured AMR solutions to scientific applications running on 

GPU-accelerated systems.

Introduction 1

Background 2

A High-level Framework for 
Parallel and Efficient AMR on GPUs

Adaptive Mesh Refinement methods reduce computational requirements of problems by increasing resolution 
for only areas of interest. However, in practice, efficient AMR implementations are difficult considering that 
the mesh hierarchy management must be optimized for the underlying hardware. Architecture complexity of 
GPUs can render efficient AMR to be particularity challenging in GPU-accelerated supercomputers. 
This article presents a compiler-based high-level framework that can automatically transform serial uniform 
mesh code annotated by the user into parallel adaptive mesh code optimized for GPU-accelerated 
supercomputers. Experimental results on three applications show that the speedups of code generated by 
our framework are comparable to hand-written AMR code, while achieving good and weak scaling up to 3,640 
GPUs of the TSUBAME2.5 supercomputer.
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partitioning them leads to a uniform distribution of the blocks 

of a mesh among different Processing Elements (PEs), while 

benefiting from the locality provided by SFC affinity. Fig.1 

illustrates how the domain and tree are represented in AMR, 

and the use of SFC to divide the blocks among three PEs.

Fig. 1   Octree-based meshes. The blocks are equally 
 partitioned using a space filling curve. 
 (a) Adaptive mesh 
 (b) Tree representation 
  (Note: 2D quadtree is used for illustration)

Fig. 2   Minimal example of using Daino directives

We design a high-level programming framework that provides 

a highly productive programming environment for AMR. The 

framework is transparent and requires minimal involvement 

from the programmer, while generating efficient and scalable 

AMR code. The framework consists of a compiler and runtime 

components. A set of directives allows the programmer to 

identify stencils of a uniform mesh in an architecture- neutral 

way. The uniform mesh code is then translated to GPU-

optimized parallel AMR code, which is then compiled to an 

executable. The runtime component encapsulates the AMR 

hierarchy and provides an interface for the mesh management 

operations.

3.1  Programming Model 

The framework provides directives to be used with standard 

C (see [3] for details on directives). The programmer is required 

to add the directives to a serial uniform mesh code in order 

to identify the operations and stencil data arrays that are the 

target for transformation. Note that the directives are not 

changing the uniform mesh implementation; the programmer 

can still use the uniform mesh implementation if the directives 

are ignored by compiler. A sample example of using directives 

to annotate a C kernel in Daino is shown in Fig. 2.

3.2  Optimizations

When an AMR code generated by Daino is executed on a GPU-

accelerated cluster, the stencil and mesh adaptation kernels 

run on the GPU, while managing the octree data structures 

and load balancing is done on the CPU side. Since we pursue 

efficiency and scalability, code on both the CPU and GPU 

should be optimized. The stencil operations in the blocks 

are themselves optimized for the GPU architecture[5]. Other 

optimizations, such as data layout in memory and using user-

managed cache memory, are applied on the GPU kernels 

responsible for adapting the mesh: error estimation, refinement 

(interpolation), and coarsening (extrapolation). Finally, 

the generated code includes optimizations to reduce the 

communication between nodes, i.e. boundary data exchange, 

and balancing the load, i.e. number of blocks per node.

3.3  Implementation

Our framework consists of a compiler and runtime 

components. We generate executables optimized for GPU 

execution by leveraging the LLVM compiler infrastructure. 

The compiler builds on the LLVM compiler infrastructure[6]. 

First, we use the front end to analyze and translate the stencil 

source code into GPU-optimized code in the form of LLVM 

Intermediate Representation (IR). Next, compiler passes are 

applied on the IR to add the AMR management code, which 

in turn make API calls to the runtime API and GPU-optimized 

High-level Framework for 
Efficient AMR 3

A High-level Framework for Parallel and Efficient AMR on GPUs
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Fig. 3   The framework overview

Fig. 4   Weak scaling of uniform mesh, 
 hand-written and automated AMR

We demonstrate the scalability of auto-generated AMR code 

using three production applications. We compare the speedup 

and scalability with hand-written AMR of all three applications 

using the TSUBAME2.5 supercomputer at Tokyo Institute of 

Technology.

4.1  Applications

Phase-field Simulation : This application simulates 3D dendritic 

growth during binary ally solidification[7]. 

Hydrodynamics Solver : This solver models a 2nd order 

directionally split hyperbolic schemes to solve Euler 

equations[8].

Shallow-water : Modelling shallow water by depth-averaging 

Navier-Stokes equations[9].

4.1  Results

In a weak scaling experiment, shown in Fig. 4, the run- time for 

uniform mesh, hand-written AMR, and auto-generated AMR 

are compared. The following points are important to note. 

First, more than 1.7x speedup is achieved using Daino using 

up to 3640 GPUs of TSUBAME for the phase-field simulation. 

This is a considerable improvement considering that the 

uniform mesh implementation is a Gordon Bell prize winner 

for time-to-solution[7]. Second, Daino achieves good scaling 

that comparable to the scalability of the hand-written AMR 

code.

Evaluation 4

code generated by the Nvidia backend code generator. Finally, 

LLVM IR is compiled and linked with the runtime libraries to 

generate and executable.

 The runtime includes two libraries: the first library 

encapsulates the AMR hierarchy management software and 

the second is a communication library that wraps the MPI 

runtime library to simplify data movement operations for the 

AMR driver. The stages of compilation and layout of Diano are 

shown in Fig. 3.
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 Fig. 5 shows a strong scaling comparison for hand-

written and auto-generated AMR against uniform mesh 

implementation. The code generated by Daino achieves 

speedups and scalability comparable to hand-written 

implementations. However, when using more GPUs, reduction 

in speedup starts to occur as the management of AMR starts 

to dominate the simulation runtime.

Fig. 5   Strong scaling of uniform mesh,
 hand-written and automated AMR

Producing efficient AMR code is a challenge, especially for 

GPUs. We introduce a framework for producing efficient 

and distributed AMR code for GPU-accelerated systems. We 

demonstrated the efficacy and scalability of three applications 

using the full TSUBAME supercomputer. To the authors 

knowledge, this is the first study to scale auto-generated AMR 

code to O(1,000s) of GPUs. However, there are still problems to 

be solved, for example, handling of customized error functions 

and boundary conditions. 
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Several services and tools have been released to reduce the 

cost of preparing high-performance GPUs (Graphics Processing 

Units) on a client device. Amazon EC2 [1] provides a cloud 

server with 16 GPUs for GPGPU (General-Purpose computing 

on GPUs) applications. Nvidia GRID [2] enables us to run high-

end GUI applications on a low-performance client device by 

utilizing GPU-enabled calculation and rendering on the cloud 

server and transferring the result via a low-latency network.

 In this report, we consider an interactive molecular 

dynamics simulation [3], which calculates on GPUs with CUDA 

(Compute Unified Device Architecture) and visualizes at 

the same time. Seamless methods to use high-end GPUs 

on a cloud device to achieve interactive simulations and 

visualizations would be required from mobile devices like 

tablets which supports many sensors.

 DS-CUDA [4, 5] is a tool to virtualize cloud-side GPUs as 

if they are attached to a client side. It supports fault tolerance 

of GPUs and networks. In this report, the overview of DS-CUDA 

and their recent results are presented.

Doing everything on one computer often results in higher cost 

or lower energy-efficiency compared to role sharing of client- 

and cloud-side computers. Fig. 1 shows three ways of role 

sharing between a client device and cloud servers: A) Most of 

the calculation and rendering are performed on a cloud server, 

B) Only rendering is performed on a cloud server, and C) Only 

CUDA calculation is performed on a cloud server.

 In the case of A), the client works as a zero-client 

computer, which means that the keyboard input or touch 

information of the client device is transferred to the cloud 

server, and the rendered video or sound is transferred from 

the cloud server. However, cloud service like Nvidia GRID does 

Introduction 1 Role sharing of a client device 
and cloud servers 2

DS-CUDA : A Handy Tool to Use GPUs 
in a Cloud Network

Cloud services have recently added GPU support for gaming and HPC purposes. 
Our DS-CUDA offloads only the calculation on GPUs to a cloud system using CUDA. 
The merit of DS-CUDA is that users can freely modify their applications on the client side, 
as well as supporting tablet sensors and fault tolerance of networks. 
We report four topics on DS-CUDA: 1) Overview of DS-CUDA, 2) 880 fold acceleration of replica-exchange 
molecular dynamics simulation using 1,024 GPUs on the TSUBAME 2.5 supercomputer, 
3) Overhead of fault tolerant function using overclocked GPUs, 
and 4) Energy efficiency using a tablet and GPU notebook.

Tetsu Narumi*
* Faculty of Informatics and Engineering, University of Electro-Communications

Fig. 1   Role sharing of a client device and cloud servers
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Table 1 compares the cloud tools mentioned in the previous 

section. DS-CUDA and rCUDA in method C) can easily support 

specific functions of applications since most parts run on the 

client side. Only the information called from CUDA APIs are 

transferred via a network, and attackers cannot see readable 

information like files on the cloud server, which should 

increase security. However, they currently do not support 

interoperability functions of OpenGL and Direct3D, which is 

necessary to render the result of CUDA calculation without 

moving data from the GPU memory.

 The recompilation of CUDA code is not needed in 

the case of rCUDA since the change of the path of dynamic 

link library is enough, while DS-CUDA needs recompilation. 

rCUDA requires a CUDA environment on the client side, 

while DS-CUDA supports client devices without CUDA when 

specially prepared [8, 9]. Special environment like CUDA is 

not needed on a client side for Nvidia GRID or Amazon EC2, 

but users have to prepare the same software-development 

environment on the cloud server.

 The merit of DS-CUDA is that it supports fault 

tolerant mechanism for the cases when GPUs caused 

Fig. 2 and 3 show the procedure of compilation and the block 

diagram of DS-CUDA system, respectively.

not support the recompiling and execution of user’s own 

applications on the cloud server. They only provide popular 

ISV applications. Amazon EC2 supports the compilation and 

execution of any application since users can customize the 

development environment on the virtual machine, while the 

video transfer via a network might become the bottleneck. 

Special mechanism will be needed to support tablet sensors 

like accelerometers on a client device for both services.

 In the case of B), a tool can hook rendering APIs 

like OpenGL on a client device and transfer them to a cloud 

server [6]. However, CUDA is not supported, which is a big 

disadvantage for HPC applications.

 In the case of C), rendering and light processing 

including sensors are performed on a client device. Users can 

compile their applications on a familiar environment without 

changing their source codes. DS-CUDA or rCUDA [7] is suitable 

for such situations. Users can enjoy the benefit of high-

end GPUs on a cloud server by hooking CUDA APIs in their 

applications.

calculation errors or a network is unstable. The reliability of 

GPUs are usually lower than those of CPUs even when they are 

specially designed for GPGPU [10]. The fault tolerance should be 

useful for reliable simulations, especially for unstable network 

environments in cloud computing.

 In the method of A), implementing fault tolerance 

is a little difficult. Users can customize their applications to 

support fault tolerance if Amazon EC2 is used. However, the 

cost of such modification is usually very high. In the method of 

C), users have potentially no cost for fault tolerance since the 

tool can virtually provide reliable CUDA APIs to them.

Table 1   Comparison of tools for using cloud GPUs

Fig. 2   Compilation with DS-CUDA compiler
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 First, a CUDA source code is compiled with DS-

CUDA compiler, which is actually a Ruby script, and two 

executables are generated for both the client and cloud 

(or server) sides (Fig. 2). On the client side, CUDA APIs are 

replaced with DS-CUDA APIs, and compiled with the DS-CUDA 

library to generate the executable. On the server side, the 

main function is removed from the source code, and compiled 

using the nvcc compiler with the DS-CUDA server library, 

which includes the body of a server as well as the CUDA library 

to generate a server executable.

 Before running the user application, a DS-CUDA 

daemon should be ready for each node (Fig. 3). When the 

client executable is started, the server executable is transferred 

from the client side to the server side and started via the DS-

CUDA daemon. Every time the client executable accesses the 

virtual GPU in the client device, its data is transferred to the 

server side via a network through the DS-CUDA server, and the 

server accesses the physical GPU in the node.

 When the function of redundant calculations is 

activated for fault tolerance, each CUDA API is automatically 

copied to two identical APIs and executed in two servers. 

Then the results from cudaMemcpy(DeviceToHost) APIs are 

compared. If the results do not match, previous APIs are 

automatically re-executed. When the migration function 

is activated, data in GPU memory which is allocated by 

cudaMalloc() API are periodically backed up to the client side. 

If unrecoverable error occurs on GPUs or network between 

client and servers is disconnected, backed-up data are 

transferred to a new GPU to continue the calculation.

CUDA provides APIs to use multiple GPUs in a node even from 

a single thread program. However, parallel programming like 

MPI is needed to use many GPUs in a cluster by controlling 

them node by node. Beginners in GPGPU might feel difficulty 

in programming since a distributed memory paradigm must 

be considered. Programming of GPUs with DS-CUDA is simple 

since the client sees all the GPUs in the server side as if they 

are attached to the client. In the following, result of using 

1,024 GPUs from a single thread program is explained as an 

extreme case [11].

 In this case, replica-exchange Molecular Dynamics 

(MD) simulation with 14,336 replicas was executed with 1,024 

GPUs in the TSUBAME 2.5 supercomputer. Replica-exchange 

MD simulation can search energy minimum state efficiently 

by exchanging temperature between parallel MD simulations 

with different temperatures every constant steps (100 in this 

result). One replica holds 256 or 2,048 Argon particles. Since 

the amount and frequency of the communication between 

different replicas are small, a single thread is enough to control 

all the GPUs in the cluster.

 Fig. 4 shows the strong scaling of the relative 

calculation speed. 880 and 340 times acceleration is achieved 

with 1,024 GPUs for 256 and 2,048 particles, respectively.

Fig. 3   Block diagram of a DS-CUDA system

Fig. 4   Strong scaling of performance
 against the number of GPUs

Using many GPUs 
from a single thread 5

DS-CUDA : A Handy Tool to Use GPUs in a Cloud Network
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 In the performance model, the total calculation time 

is divided into three parts: GPU calculation, CPU calculation, 

and communication. The communication is further 

divided into two parts: Latency-oriented communication 

time and bandwidth-oriented communication time. The 

average amount of the communication is only 1.9 kbytes, 

which is relatively small. Therefore, the latency-oriented 

communication time is 57.5 msec for 1,024 GPUs, while 

the bandwidth-oriented one is only 6.7 msec. In total, GPU 

calculation time is still dominant, which is 471 msec. However 

for 4,096 GPUs, GPU calculation time would be reduced to 

118 msec, while latency-oriented communication time be 

increased to 230 msec. The bottleneck would be caused by 

the latency-oriented communication for this case. To avoid the 

bottleneck, one idea is to use multi thread programming like 

OpenMP on the client side.

 On the one hand, the calculation time becomes 

larger when the period of checkpointing is small, since the 

operation of backing-up GPU memory takes more time. On 

the other hand, the calculation time also becomes larger when 

the period of checkpointing is large, since the re-execution 

of previous CUDA APIs takes time as the possibility of errors 

occurring becomes larger. In this configuration, the optimal 

checkpointing interval was 100 seconds, and the overhead 

was roughly 10% . Non-over-clocked GPUs are more reliable [10], 

and the overhead would be much less than this result.

Users have only to set environment variables to activate 

the fault tolerant function, but the overhead in calculation 

time exists. Backing-up GPU memory to the client side every 

few steps, known as checkpointing, causes performance 

degregation, especially when the frequency of checkpoinging 

is not optimal.

 Fig. 6 shows the relative calculation time when the 

period of checkpointing was changed [12]. The same application 

in the previous section was used for this experiment. Over-

clocked GPUs were used to artificially generate calculation 

errors, and we chose data when the period is close to 900 

seconds per one error, which is shown as crosses in Fig. 6. 

A special DS-CUDA server, which is designed to generate an 

error every 900 seconds, is also used, and its data was plotted 

as circles in Fig. 6.

 Fig. 5 shows the time ratio of calculation and 

communication with 2,048 particles for 256, 1,024, and 4,096 

GPUs. We made a performance model which fits up to 1,024 

GPUs and applied it to 4,096 GPUs.

Fig. 5   Ratio of calculation and communication

Fig. 6   Overhead of calculation with
 fault tolerant function

Overhead to support fault tolerance 6
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Combining tablet and GPU notebook 7
Fig. 7 shows a block diagram of a DS-CUDA system, which 

composed of a non-GPU tablet on the client side, a GPU 

notebook on the cloud side, and a WiFi router between 

them. Table 2 shows the energy efficiency (Gflops/Watt) 

and rendering speed (Frame/sec) of an MD simulation and 

visualization using 5,832 particles [13, 14]. Power consumption of 

both of the tablet and the notebook are summed for the last 

row.

 The DS-CUDA system achieves 9.0 Gflops/Watt, 

which is good enough compared with Green500 [15], though 

the number is a little lower than that of a Notebook of 12.8 

Gflops/Watt. Note that it should not be compared with 

Green500 numbers precisely, since it was calculated by a 

single-precision flops count and complicated function and 

division is counted as several operations.

 Though the tablet itself is slow both in calculation 

and rendering, combining a tablet and a notebook with DS-

CUDA achieved several tens of acceleration in calculation 

speed, energy efficiency, and rendering speed. Especially, 

rendering speed of 20 Frame/sec is smooth enough for 

interactive simulation.

 Although not shown in this table, a SHIELD tablet, 

which supports native CUDA, was found to achieve lower 

numbers in calculation speed, energy efficiency, and rendering 

speed compared with the DS-CUDA system.

Fig. 7   Using a tablet and notebook with DS-CUDA

Table 2    Calculation speed and energy efficiency

The effectiveness of the idea of DS-CUDA to use multiple GPUs 

was discussed as a cloud and visualization tool.

 DS-CUDA enables the use of many GPUs via a 

network from a usual client computer. Acceleration of 

calculation and visualization can be achieved while utilizing 

touch and accelerometer sensors on a tablet client device. 

Moreover, a fault tolerant capability can be easily added.

 Although mobile GPUs might have better energy 

performance and high-end GPUs might have better absolute 

performance, combining a client with cloud computers can 

achieve balanced performance in calculation speed, rendering 

speed, and power efficiency.

 Recent advancement of tablets makes them an ideal 

tool for interactive simulation and visualization. Cloud tools 

like DS-CUDA would be an interesting approach to realize such 

requirements.
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International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the 
international arena. We promote international research collaborations using 
TSUBAME between researchers of Tokyo Institute of Technology and overseas 
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude 
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint 
research to ensure that the proposed research meet academic qualifications 
and contributions to international society. Overseas users must observe 
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s 
researcher as part of research collaboration. The results of joint research are 
expected to be released for academic publication.


