PRESS RELEASE

Source: Tokyo Institute of Technology

For immediate release: December 2, 2021

Boosting Thermopower of Oxides via Artificially laminated Metal/Insulator Heterostructure

(Tokyo, December 2) Ultra-thin metal oxide LaNiO₃ sandwiched between two insulating layers of LaAlO₃ exhibits a 10-fold increase of voltage caused by thermoelectric energy conversion, scientists from Tokyo Tech have demonstrated. This discovery opens up new avenues for development of high-performance thermoelectric materials by designing the laminate structure of different oxides.

Boosting Thermopower of Transition Metal Oxide Using Artificially Laminated Metal/Insulator Heterostructure

Thermoelectric materials have the ability to generate electricity when a temperature difference is applied to them. Conversely, they can also generate a temperature gradient when current is applied to them. Therefore, these materials are expected to find use as power generators of electronic devices and coolers or heaters of temperature control devices. To develop these applications, a thermoelectric material showing high thermoelectric voltage (called thermopower (*S*)) even on applying low thermal energy is required. However, conventional thermoelectric materials exhibit high conversion efficiency at high temperatures, whereas there are only a few candidates that show high conversion performance at below room temperature.

Recently, a team of researchers from Tokyo Tech, led by Associate Professor Takayoshi Katase, developed a new method to significantly enhance *S* at low temperatures. In a recent paper published in <u>Nano Letters</u>, the team reported an unusually large enhancement of *S* observed in laminate structures made of an ultra-thin film of the transition metal oxide LaNiO₃ sandwiched between two insulating layers of LaAlO₃.

"We clarified that the unexpected increase in *S* was not caused by usual thermoelectric phenomenon but by the "phonon-drag effect" arising from the strong interaction of electrons and phonons. If the phonon-drag effect is strong, the flowing phonons can drive the electrons to produce extra thermoelectric voltage when a temperature difference is applied. This phenomenon is not observed in LaNiO₃ bulk but appears upon reducing the layer thickness of LaNiO₃ film and confining it between insulating LaAlO₃ layers," explained Dr. Katase.

By reducing the thickness of LaNiO₃ films down to just 1 nm and sandwiching the film between LaAlO₃ layers, the team was able to enhance *S* at least 10-fold. This enhancement was observable for a wide range of temperatures up to 220 K. The experimental analyses revealed that the phonon drag effect originated from enhanced electron-phonon interaction by massive electrons confined in the LaNiO₃ layer and the flowing phonons leaking from the upper and lower LaAlO₃ layers.

"The findings from this study can be used to explore new high-performance thermoelectric materials by designing the laminate structures of different oxides that can improve energy generation and fuel utilization," concludes Dr. Katase.

Reference	
Authors:	Masatoshi Kimura ¹ , Xinyi He ¹ , Takayoshi Katase ^{1,2*} , Terumasa Tadano ³ , Jan M. Tomczak ⁴ , Makoto Minohara ⁵ , Ryotaro Aso ⁶ , Hideto Yoshida ⁷ , Keisuke Ide ¹ , Shigenori Ueda ^{8,9,10} , Hidenori Hiramatsu ^{1,11} , Hiroshi Kumigashira ^{12,13} , Hideo Hosono ¹¹ , and Toshio Kamiya ^{1,11*}
Title of original paper:	Large phonon drag thermopower boosted by massive electrons and phonon leaking in LaAlO₃/LaNiO₃/LaAlO₃ heterostructure
Journal:	Nano Letters
DOI:	10.1021/acs.nanolett.1c03143
Affiliations:	¹ Laboratory for Materials and Structures, Institute of Innovative Research,
	Tokyo Institute of Technology, Japan
	² PRESTO, Japan Science and Technology Agency, Japan

³National Institute for Materials Science, Japan ⁴Institute of Solid State Physics, Vienna University of Technology, Austria ⁵Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Japan ⁶Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Japan ⁷The Institute of Scientific and Industrial Research, Osaka University, Japan ⁸Research Center for Functional Materials, National Institute for Materials Science, Japan ⁹Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Japan ¹⁰Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Japan ¹¹Materials Research Center for Element Strategy, Tokyo Institute of Technology, Japan ¹²Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Japan ¹³Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan

*Corresponding author's email: <u>katase@mces.titech.ac.jp</u>

Contact

Kazuhide Hasegawa Public Relations Division, Tokyo Institute of Technology <u>media@jim.titech.ac.jp</u> +81-3-5734-2975

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of "monotsukuri," meaning "technical ingenuity and innovation," the Tokyo Tech community strives to contribute to society through high-impact research. https://www.titech.ac.jp/english/