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In recent years, fuel-efficient vehicles such as hybrid cars have 

been actively researched and developed to reduce the 

environmental load of vehicular transportation. In order to further 

improve the fuel efficiency of vehicles, it is necessary not only to 

develop high performance engines and motors, but also to reduce 

the weight of vehicles by reducing the thickness of the sheet 

metal used in them. Meanwhile, sheet metal needs to be 

strengthened further to ensure the safety of vehicles’ occupants 

in case of an accident. However, the strengthening of sheet metal 

often causes low formability: when sheet metal is strengthened, 

cracks and fractures occur in the press forming process. A large 

number of trial-and-error experiments have been carried out in 

the past to control the strength and formability of the sheet metal.

 At present, because of intensifying international 

competition in the field of new materials, the infrastructure of 

computational materials engineering has grown increasingly 

important. Simulation-based material development is expected 

to shorten the development period and help efficiently produce 

new materials. In particular, the multi-phase field (MPF) method[1] 

has attracted considerable attention as one of the most promising 

simulation tools to predict microstructural evolution in metallic 

materials. In contrast to the phase field simulation of dendritic 

solidification using the TSUBAME2.0 supercomputer of the Tokyo 

Institute of Technology, which was awarded the ACM Gordon 

Bell Prize in 2011[2], an MPF simulation needs to solve multiple 

non-linear partial differential equations. Therefore, it requires 

more memory and a longer computational time than needed for 

conventional phase-field simulations. 

 In this study, we develop and test a multiple GPU 

computation technique for massively parallel computation of 

large-scale MPF simulations. This technique includes an 

The MPF method used in this study was proposed by Steinbach 

and Pezzola in 1999[1]. The MPF method simulates microstructural 

evolution in materials by assuming that the total free energy 

of the material monotonically decreases with time. When we 

consider a system of N crystal grains, the total free energy of the 

system is represented by the following equation:

where the first term of the right-hand side describes the potential 

energy and the second term corresponds to the gradient energy. 

The parameters Wi j and ai j are functions of the interfacial energy 

and the interfacial thickness, and      (r, t ) is a continuous order 

parameter called the phase field variable.      (r, t ) describes the 

local volume fraction of the ith crystal grain at coordinate r and 

time t . Therefore,       (r, t ) admits the value 1 for the i th grain and 0 

otherwise.      (r, t ) changes smoothly from 0 to 1 in the interfacial 

region.

 The time evolution equation of the phase field variables 

(Allen–Cahn equation) can be derived by considering the monotonic 

reduction of the total free energy expressed by Equation (1):

overlapping method[3] that enables us to simultaneously carry 

out computations concerning the GPU and data communication. 

By implementing our computation technique to the TSUBAME2.5 

supercomputer, we conducted large-scale three-dimensional 

(3D) MPF simulations of polycrystalline grain growth. We present 

the results of the performance evaluation of the large-scale MPF 

simulations thus obtained[4].

Introduction 1

Multi-phase field method 2

Multi-GPU Computation of Multi-phase
Field Simulation of the Evolution of
Metallic Polycrystalline Microstructure

The multi-phase field method is recognized as one of the most promising simulation tools for predicting the evolution 
of polycrystalline microstructures in metals. We have recently developed a massively parallel computation technique 
that uses multiple graphics processing units (GPUs) for large-scale three-dimensional (3D) multi-phase field simulation. 
In this article, we introduce this multiple GPU computation technique, including an overlapping method that enables 
us to simultaneously perform computations concerning the GPU and data communication. We implemented our 
computation technique on the TSUBAME 2 . 5 GPU supercomputer and evaluated its performance. Large-scale 3D 
simulations of polycrystalline grain growth performed on the TSUBAME2.5 exhibited high computing performance.
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3.1 Active parameter tracking method

Using the MPF method, we solve Equation (2) with respect not to 

N phase field variables but only n non-zero phase field variables. 

Therefore, we do not need to save the values of all N phase 

field variables. In this study, we employed the active parameter 

tracking (APT) method[5] to reduce memory consumption. The APT 

method is an essential algorithm for the efficient implementation 

of large-scale 3D MPF simulations. The details of the APT method 

can be found in reference[5]. In this article, we categorize the APT 

algorithm into APT1 and APT2. APT1 requires values of the phase 

field variables at each computational grid, whereas APT2 needs 

the values of variables at neighboring computational grids. 

3.2 Domain decomposition

In order to perform the MPF simulation using multiple GPUs, we 

decomposed an entire computational domain into subdomains. 

A set of GPUs and a CPU is allocated for computation to each 

subdomain. Figure1 shows the 3D domain composition as an example 

of domain decomposition. When the entire computational domain 

divided by NX×NY  × NZ finite difference grids is decomposed into 

X, Y, and Z subdomains along X, Y, and z directions, the number of 

computational grids in each subdomain is NX/X× NY/Y×NZ/Z. 

The computation of the time evolution equation (Equation (2)) for 

each subdomain requires data on the surfaces of the neighboring 

subdomains. Therefore, we prepared boundary regions on the 

surfaces of each subdomain along x, y , and z directions. In the 

parallel computing, the data in the boundary region is transferred 

by using the Message Passing Interface (MPI) library. In the 

assessment of the performance of parallel computation, 

we attempted one-, two- and three-dimensional domain 

decompositions and selected the most-effective manner of these.

where n is the number of the phase field variables greater than 0, 

and          is the mobility of the phase field variable. 

 In the MPF simulation, Equation (2) is solved by the 

second-order finite difference method for space and the first-order 

forward Euler method for time on a regular 3D computational grid. 

The program code was written in CUDA Fortran.

Multiple GPU computation of 
MPF method 3

Fig. 1   3D domain decomposition.



04

Multi-GPU Computation of Multi-phase Field Simulation of the Evolution of 
Metallic Polycrystalline Microstructure

3. 3 Assignment of threads and blocks

It is well-known that the assignment of CUDA threads and blocks 

is crucial to obtaining high performance from GPU computing. 

Figure 2 shows the assignment of CUDA threads and blocks to 

each subdomain employed in this study. We divided subdomains 

of size nx × ny × nz into X ’ × Y ’ small domains along the x and y 

directions. Thus, the size of each small domain was nx/X’ × ny/Y ’ 

× nz. A thread block of size nx/X ’ × ny/Y ’ × 1 handled each small 

domain by marching in the z  direction[2]. The optimum number 

of CUDA threads and block were determined by trial and error 

because performance depends on the size of the computational 

domain and the number of GPUs used in the simulation.

3. 4 Overlapping method

In order to perform parallel computation using multiple GPUs and 

CPUs, data communication is needed not only among CPUs, but 

also among the GPUs and between GPUs and CPUs. Therefore, 

the time required for data communication can degrade parallel 

efficiency. Thus, we propose an overlapping method that masks 

the time needed for data communication with the time required 

to perform computation on the GPUs[4]. 

 Figure 3 shows the computational diagram used for 

the MPF simulation using the overlapping method. All operations 

(kernel execution and data communication) on the GPU are 

concurrently run in four CUDA streams (Stream 1~4). In Stream 1, 

we compute the time evolution equation for the internal region 

of the subdomain and handle the procedure for APT1. The 

computation of the time evolution equation for the boundary 

regions is carried out in Streams 2, 3, and 4 simultaneously. 

Following the completion of the computations in Streams 2, 3, 

and 4, data in the boundary regions is asynchronously transferred 

from the global memory on the GPU to the host (CPU) memory 

using the cudaMemCpyAsync function in the CUDA application 

programming interfaces (APIs). 

 The CPU transfers data in the boundary regions, calculated 

by the GPU in the previous time step, to the host memory. Following 

data communication between the GPU and the CPU in Streams 2, 3, 

and 4, the CPU initiates the procedures for APT1 and APT2 for the 

boundary regions and carries out data communication among CPUs 

with the MPI library. Data updates by APT1 and APT2 are transferred 

back from the CPU to the GPU while Stream 1 is executed on the 

GPU. 

 Once all streams on the GPU are synchronized with 

the computation and data communication on the CPU, the GPU 

handles the procedure for APT2 for the boundary regions and 

updates the calculated data. The calculated data on the CPU can 

be updated while all streams are executed on the GPU.

Fig. 3   The overlapping method.

Fig. 2   Assignment of CUDA threads and blocks.
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4. 1 Polycrystalline grain growth simulation

We evaluated the performance of our proposed multiple GPU 

computation by simulating large-scale 3D polycrystalline grain 

growth on the TSUBAME2.5 GPU supercomputer at the Global 

Scientific Information and Computing Center of the Tokyo 

Institute of Technology. All simulations were performed using 

single-precision floating-point calculation.

 As an example of the simulation results, we show 

snapshots of the polycrystalline grain growth behavior simulated 

using 256 GPUs on TSUBAME2.5 in Figure 4. In this simulation, 

the size of the computational domain was 0.5123 mm3 and the 

number of computational grids was 10243. The initial number of 

crystal grains was 32,768. The crystal grains were visualized by 

different colors. Polycrystalline grain growth can be observed 

in the heat treatment of metallic materials, e.g., annealing. The 

simulation result successfully reproduced the coarsening and 

the shrinking of crystal grains. The statistical evaluation of the 

polycrystalline microstructure, e.g., the distribution of crystal 

grain size and average grain size, is only possible when a large-

scale MPF simulation taking into account a large number of 

crystal grains is performed.

 In order to evaluate the performance of multiple GPU 

computing, we measured variation in the value of Floating-

point Operations Per Second (FLOPS) by changing the number 

of GPUs used for the simulation. Figure 5 shows the results of 

the performance evaluation for weak scaling. Here, we evaluated 

the variation in the value of FLOPS with the number of GPUs for 

a fixed computational grid size per GPU. In this case, each GPU 

handled 2563 computational grids and 512 crystal grains. The 

results show that the performance improved in proportion to 

the number of GPUs, and that the overlapping method improved 

performance. As a result, we attained 1.9 TFLOPS using 729 GPUs 

for 23043 computational grids and 373,248 crystal grains. 

 Furthermore, we evaluated the performance of our 

system for strong scaling. Here, the variation in the value of 

FLOPS with the number of GPUs for a fixed computational 

domain size was measured. The number of crystal grains was set 

to 512 per 2563 computational grids. Figure 6 shows the results 

of the strong scaling for three different computational domain 

sizes: 2563, 5123, and 10243. Similar to the results for weak scaling 

shown in Figure 4, the performance improved with increasing 

Fig. 4   Polycrystalline grain growth behavior simulated 
 using the TSUBAME2.5 supercomputer. 
 The simulation was performed using 256 GPUs 
 on 10243 finite difference grids. Crystal grains 
 were visualized by different colors.

Fig. 5   Weak scaling of multiple GPU computing.

Performance evaluation of multiple 
GPU computing on TSUBAME2.5 4
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number of GPUs. However, in case a small computational domain 

size was used, the performance degraded when we used a large 

number of GPUs. This is because the size of subdomain handled 

by each GPU decreased by increasing the number of GPUs and 

the time for the data communication cannot be masked with 

that for computation. On the other hand, when we used large 

computational domain sizes and more than 100 GPUs, the 

performance clearly exhibited high scalability.

Fig. 6   Strong scaling of multiple GPU computing.

Summary 5
The multiple GPU computation technique has been developed 

for massively parallel computation of large-scale 3D MPF 

simulations. In this paper, we successfully applied this technique 

was successfully to the TSUBAME2.5 supercomputer. We showed 

that extremely large-scale MPF simulations of polycrystalline 

grain growth can be efficiently performed using our technique. 

The performance evaluation showed that high scalability was 

achieved by using the overlapping method.

 It remains time-consuming to optimize the size and 

distribution of the polycrystalline microstructure that produces 

desirable mechanical properties in the material only by trial-and-

error experiments. Therefore, we expect that efficient large-scale 

MPF simulations using the multiple GPU computing technique 

proposed in this article will contribute to the acceleration of 

materials development and the reduction of experimental cost.
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Quantum Monte Carlo (QMC) method is one of the most accurate 

ab initio methods to solve the Schrödinger equations of atoms, 

molecules, and solids [1]. In particular, diffusion Monte Carlo (DMC) 

method gives a very accurate variational energy of the systems. 

However, the scope of application of the DMC method is 

practically limited in the estimation of a variational energy due 

to some serious problem known as the population control bias, 

the difficulty to compute the expectation values of the non-

commutative operators with Hamiltonian, etc . 

 Reptation Monte Carlo (RMC) method [2] is one of QMC 

methods using the imaginary-time propagation of time-

dependent Schrödinger equation as well as the DMC method. In 

principle, RMC method has the equivalent theoretical accuracy to 

the DMC method, but allows the population control bias free 

algorithm and the exact estimation of non-commutative operators 

with Hamiltonian. The computational cost in RMC calculations is, 

however, extremely expensive compared to that in the DMC 

calculations. Thus, the scope of the application of the RMC method 

is limited in small molecular systems such as H2O molecule [3].

 In this report, we show the parallel implementation 

method of our RMC program developed toward RMC calculations 

of large-scale molecular systems. The RMC program has been 

developed as a part of vibrational quantum Monte Carlo (vibQMC) 

method that we have recently proposed. In the following sections, 

we describe the theoretical outline of our vibQMC method, the 

benchmark calculations of parallel efficiency of vibQMC program 

on TSUBAME 2.5 super-computer system, and theoretical results 

of vibrational state analysis of monohydrated negative core 

ion, H3O2
-, which is a precursor ion in forming aerosols in the 

atmosphere, as an application of a large-scale parallel RMC 

computation.

In this study, we used two types of QMC technique, variational 

Monte Carlo (VMC) and RMC methods, for anharmonic vibrational 

state analyses of polyatomic molecules. We here briefly describe 

theoretical outline of the both methods. 

2.1. Variational Monte Carlo (VMC) method

We consider the following expectation value      of Hamiltonian 

operator                    (     and     are kinetic and potential energy 

operators, respectively) with a given trial wave function       :

where                             is a generalized multi-dimension coordinate, 

and is referred to as a configuration or  walker  in QMC methods. 

The variable                        is a local energy. We assume a real trial 

wave function (                 ). In Eq. (1), the expectation value      can 

be evaluated as the average of      over whole configuration 

space      with the statistical weight     .  In VMC method, thus, we 

simply calculate the value of       by generating a set of

with Metropolis’s method [4], where M is the number of sampling 

points. 

 The VMC method enable us to analyze not only a 

total energy of a system, but also a expectation value of a given 

physical properties, although its theoretical accuracy strongly 

depends on the quality of trial wave function. In QMC calculations 

for many electron system such as atoms, molecules, and solids, 

Slater-Jastrow type trial wave function, which consists of a single 

(or multi)  Slater determinant(s) obtained with molecular orbital 

Introduction 1 Method 2

A Large-scale Parallel Computation for 
Vibrational State Analysis Based on 
Quantum Monte Carlo method

We show theoretical outline of vibrational quantum Monte Carlo (vibQMC) method that we have recently developed, 
and its parallel implementation method toward a large-scale parallel computation on a super-computer system. 
The parallelization ratio of our vibQMC program code is 99.9981% , and the practical parallel efficiency using 5376 
cores on TSUBAME 2.5 super-computer system is about 91% . 
We also show theoretical results of vibrational state analysis of the monohydrated negative core ion, H3O2

-, which 
is a precursor ion in forming aerosols in the atmosphere.
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A Large-scale Parallel Computation for 
Vibrational State Analysis Based on Quantum Monte Carlo method

calculations and Jastrow factor involving many body effects, 

are generally employed. In the present study in which we focus 

on quantum many body problems of molecular vibrations, we 

employed the following Vibrational Self- Consistent Field (VSCF) 

type wave function [5]:

where qi and      are a vibrational coordinate and modal function 

of i th normal vibrational mode, respectively. Each modal function 

is expanded by a set of eigenfunctions of harmonic oscillator. 

Variational parameters in the trial wave function such as centers, 

exponents, and expansion coefficients of basis functions are 

optimized with the linear optimization method [6] proposed by 

Umrigar et al . Optimized VSCF functions are used in the initial trial 

wave function in RMC calculations described in the next section.

2.2.  Reptation Monte Carlo (RMC) method

Here, we consider a one-dimension case for the simplification of 

mathematical expression. In QMC method using an imaginary-

time evolution of time-dependent Schrödinger equation, the 

exact wave function        are obtained by acting an imaginary-

time propagator on a given initial trial wave function        :

Decomposing the imaginary-time propagator           into N short 

time propagators with an imaginary-time step                    , we 

obtain the following partition function under the second order 

approximation (Suzuki-Torotter decomposition[7]):

The variable  q (i) is the configuration at the imaginary-time          , 

and a set of configurations                       is referred to as an 

imaginary-time path or reptile . In Eqs.(5)-(7), we employed the 

following second order decomposition:

where                         ,                                         ,

 and                                               .

 In Eq.(5),                            is the propagator to generate 

reptiles whose distributions are according to       , and   

                          is the statistical weight of the generated reptile. 

In our RMC program, reptiles are generated with the Langevin 

equation defined as

where              ,    is the reduced mass of a vibrational mode,

               the Gaussian distribution with a variance           , and       

                    drift velocity. In reject/accept procedures in RMC 

calculations, we employed Metropolis’s method.

 After a lot of Monte Carlo samplings with a long time 

imaginary-time    , the distributions of q (0) and q(N) converge to the 

distribution       ×       , and that of q (N/2) converge to the exact 

density distribution      . To evaluate the expectation value of 

Hamiltonian operator, we used the following estimator (mixed 

estimator) with the distribution      ×       :

The exact density distribution        is used to calculate the 

expectation value of non-commutative operators with 

Hamiltonian such as potential energy operator, and to analyze 

the geometry of molecules.

where     is an imaginary-time. In RMC method, we consider the 

following pseudo-partition function Z0：

where
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As described in the previous sections, we generate multiple 

Markov chains with Metropolis’s method for walkers and reptiles 

in VMC and RMC calculations, respectively. Thus, the most 

straightforward and useful approach toward a parallel computing 

of QMC calculations is simultaneous samplings in configuration 

space using statistical independent multiple walkers/ reptiles 

(see Fig.1). In our program, multiple Markov chain generations 

are simply performed with multiple processes. Figure 2 show 

the schematic illustration of our parallelized QMC program code. 

Data I/O from/to a external storage are performed in Master 

process. Markov chain generations for walkers/reptiles are 

performed on both Master and Slave processes. We implement 

such parallelized algorithm with MPI (Message Passing Interface), 

and use OpenMPI library version 1.4.2 on TSUBAME 2.5 super 

computer system.

4.1.  Parallel efficiency

We performed a benchmark calculation of the parallel efficiency 

of our vibQMC program on TSUBAME 2.5 super-computer system 

in Tokyo Institute of Technology: the number of cores is up to 

5376 cores (1 process/core × 12 cores/node × 448 nodes). 

The vibrational ground state of a monohydrated positive core 

ion, H5O2
+, are used in benchmark calculations. We used the 

analytical potential function proposed by Huang et al .[8] which 

well reproduces potential energy surface at CCSD(T)/aug-ccpVTZ 

level of ab initio calculations.

 Figure 3 shows the relative speed up (=Time[12 

process] /Time [ N processes]) to the computational time with 12 

parallels (1 node) in VMC and RMC calculations. The speed up with 

5376 cores is 4868 (=405.70 × 12) in VMC calculations, and 2307 

(=192.25 × 12) in RMC calculations: the parallel efficiencies in 

VMC and RMC calculations are about 91% and 43% , respectively. 

Assuming that the size of problems is constant in each calculation 

(Amdahl’s law [9]), we can estimate the ratio of sequential 

execution process in 12 parallels calculation as r  V
（12）

MC =0.023% and   

r  R
（12）

MC =0.3% in VMC and RMC calculations, respectively. 

Parallelization of QMC algorithm 3 Results and discussion 4

Fig. 1   Schematic diagram of decomposed Markov chain.

Fig. 2   Schematic illustration of parallelized 
 QMC program code.

Fig. 3   Relative speed up to the computational time 
 with 12 parallels (1 node) in VMC and RMC 
 calculations on TSUBAME 2.5 super-computer 
 system.
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These ratio denote that 99.9981% and 99.975% of total  

processing in a non-parallel (1 core) calculation are parallelized in 

VMC and RMC calculations, respectively.

4.2. Monohydorated negative ion core: H3O2
-

We performed anharmonic vibrational state analyses of a 

monohydrated negative core ion, H3O2
-, which is one of precursor 

ions in forming aerosols in the atmosphere, as an application 

of large-scale parallel computation of our QMC program. With 

a conventional ab inito calculation which does not include the 

nuclear quantum effect (NQE) or the effect of quantum molecular 

vibrations, the most stable equilibrium structure of H3O2
- system 

becomes asymmetric O—H*···O or O···H*—O structures as shown 

in the Fig. 4 (a), because the central hydrogen atom (H*) in H3O2
-

has the double-well potential along the H* transfer coordinate. 

On the other hand, with theoretical calculations including the 

NQE [10,11], the effective potential energy curve along the H* 

transfer coordinate changes to the single-well due to the small 

potential barrier height (0.88 kJ/mol). Then, the H* is located at 

the center between two oxygen atoms as O···H*···O as shown 

in Fig. 4(b) which corresponds to the transition state (TS) in 

conventional ab initio calculations. 

 We analyzed the vibrational ground state and 

fundamental tone state of vibrational mode associated with the 

H* transfer between two oxygen atoms (here we call bridge-

vibration) for H3O2
- and its deuterium (D) and tritium (T) species. 

The VSCF type wave function was used as the trial wave function 

in VMC and RMC calculations. The analytical potential function 

proposed by Huang et al .[8] which well reproduces potential 

energy surface at CCSD(T)/aug-ccpVTZ level of ab initio calculation 

are used. 

 Table 1 shows the zero-point vibrational energy (ZPE) 

and the fundamental frequency of the bridge-vibration for all 

species. The ZPEs, which are the variational energy, obtained 

with RMC method are lower than that with VMC method for all 

species. The theoretical accuracy is, thus, improved with the RMC 

calculations compared to the VMC calculations. In addition, the 

RMC calculation well reproduce the experimental fundamental 

frequency (697cm-1) of the bridge- vibration of H-species within 

the error of 12 cm-1.

 In order to analyze structural properties of H*, D*, and T* 

at each vibrational state, we focus on the parameter 

δ OH* = R O1H* − R O2H*, where the two oxygen-hydrogen distances, 

R O1H*, O2H*, are defined in Fig. 4(b). The H* (or D*, T*) is located at 

the central position between two oxygen atoms at δ OH* = 0. 

Figure 5 shows one dimensional distribution of  δ OH* obtained 

with RMC calculations. In the vibrational ground states (Fig. 5(a)), 

the H-species has a single peak in the distribution at δ OH* = 0. 

Similar results have been reported with DMC calculations by 

McCoy et al .[10] and path-integral molecular dynamics (PIMD) 

calculation by Suzuki et al .[11] In their PIMD calculations, D- and 

T-species have almost the same distributions of δOD*  and δOT* 

each other at 50 K. Our RMC calculation, however, shows that the 

Fig. 4   Schematic illustrations of (a) equilibrium and 
 (b) vibrational averaged geometries of H3O2

-.

Table 1.    Zero-point vibrationalal energy (ZPE) and 
 fundamental frequency (ω) of the bridge 
 vibration mode of H3O2

- system. Unit in cm-1

A Large-scale Parallel Computation for 
Vibrational State Analysis Based on Quantum Monte Carlo method
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distribution of T-species is more localized than that of D-species 

at 0 K (vibrational ground state).

 The distribution of δOH* at the fundamental tone state 

of the bridge-vibration is shown in Fig. 5(b). All species have 

double peaks in the distribution at around two equivalent 

equilibrium geometries. Each peak position of H-, D-, and T-species 

in one side of the distribution is shifted to a large |δOH* | region as 

the nuclear mass becomes lighter due to the anharmonicity of 

potential energy curve along the H* (or D*, T*) transfer coordinate. 

It is interesting that the probability density at δOH* = 0 ( TS with 

respect to H* transfer) increases as the nuclear mass becomes 

heavier at both the vibrational ground and fundamental tone 

states.

 Figure 5(c) shows the distributions of δOH* at 600K, 

where we assumed Boltzmann statistics with two vibrational 

states. The H-species has a single peak in distribution, but its 

distribution at 600 K is more delocalized than that at 0 K. On the 

other hand, the distributions of the D- and T-species slightly split 

as reported in the previous PIMD calculations at 600 K [11]. The two 

state model with RMC calculations well reproduces PIMD results 

at 600 K. The consistency between both methods indicates that 

the splits of the distribution of D- and T species at high 

temperature region are mainly due the vibrational excitation of 

the bridge-vibration.

Fig. 5   One dimensional distribution of δOH* in H3O2
- 

 and its D- and T-species. (a) the vibrational 
 ground state (v=0), (b) the fundamental tone 
 state of the bridge vibrational mode (v=1), (c) 
 at 600K. Unit in Bohr.

In this report, we describe theoretical outline of vibrational 

quantum Monte Carlo (vibQMC) method, variational Monte 

Carlo (VMC) and reptation Monte Carlo (RMC) methods, and its 

parallel implementation method toward a large-scale parallel 

computation on a super-computer system. The parallelization 

ratios of our vibQMC program code are 99.9981 % and 99.975 % 

in VMC and RMC programs, respectively. The parallel efficiencies 

using 5376 cores on TSUBAME 2.5 super-computer system is 

about 91% and 43 % in VMC and RMC calculations, respectively. 

We also show theoretical results of vibrational state analysis of 

the monohydrated negative core ion, H3O2
-, which is a precursor 

ion in forming aerosols in the atmosphere as an application 

of a large-scale parallel computation of our vibQMC program. 

We used less time-consuming analytical potential functions in 

vibrational state analyses from a computational cost point of 

view. A further improvement of parallel efficiency is strongly 

expected by a combination of vibQMC and on-the-fly ab initio 

method in potential energy calculations. Such approach must be 

quite useful for analyzing a larger molecular system, because an 

accurate analytical potential function is no longer available for 

such systems.

Conclusion 5
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Beside natural phenomena, granular materials often appear in 

machines as toners in laser printers, pharmaceutical tablets in 

formulation processes, suspension flows in chemical plants, 

and so on. Granular materials sometimes behave as a liquid and 

sometimes behave as a solid. 

 There is a lot of demand for studying granular 

materials by computer simulation. In the commonly used DEM 

(Discrete Element Method), spring and friction forces work 

only among particles that are in contact. Since the number 

of contact interactions with a particle is small, the cost of the 

memory access is greater than that of floating-point operation 

in interaction calculation. On the other hand, MD (molecular 

dynamics) or astrophysics N-Body problems are similar types of 

particle simulations; however, the cost of floating-point operation 

is quite dominant due to their long-range interactions.

 There are few studies on large-scale granular 

simulations because the computational cost proportionally 

increases with increasing number of particles. When we want to 

simulate granular materials in a spoon of sugar, there are more 

than 1 million sugar grains, and the computational cost becomes 

quite large. Although coarse-graining models have been 

developed to reduce the particle number, it is very meaningful 

to carry out DEM simulations with realistic-sized particles for 

quantitative analyses. Recent supercomputers perform well 

enough to carry out granular simulations using the real particle 

number. Almost all supercomputers consist of multiple nodes, 

each node has a few processors with or without accelerators such 

as the GPU (graphics processing unit), and are interconnected by 

high-speed networks. Large-scale DEM simulations have to run 

efficiently on the memory-distributed system of supercomputers.

Recent GPUs have more than 2,000 processing cores (CUDA 

cores) on a single chip. Fine-grain parallelization and multi-

thread programming are required to have high performance, 

and we have to take into consideration the hierarchical structure 

and the limited size of the memory. In the GPU implementation 

of our code, we use the CUDA programming framework given 

by NVIDIA. 

 In the DEM, the particle interaction is modeled as a 

spring and a dumping force proportional to the penetration 

depth and the relative velocity of the two particles in contact 

with each other in the normal direction. In the tangential 

direction, friction is also taken into account as shown in Fig. 1.

 The computational cost of the DEM is proportional 

to the number of particles. We divide the particles into groups 

with the same number of particles. If we divide the particles 

by the numbers initially assigned to them, unacceptable data 

communication among nodes will occur. It is natural to apply 

spatial domain decomposition to the DEM simulation since 

the particles interact by being in contact with each other. 

Unfortunately, since granular material changes its particle 

distribution in time and space, we do not keep the same particle 

number in each subdomain with static domain decomposition. 

Therefore, it is necessary to introduce a dynamic load balance.

 The GPU has the advantages of high performance 

for floating-point operation and wide memory bandwidth. 

We have to use the device memory on the GPU board, so the 

communication cost among the device memory becomes large. 

This makes large-scale DEM simulations more difficult on GPU 

supercomputers.

Introduction 1

DEM computation on GPU 2

Large-scale DEM Simulations 
for Granular Dynamics

Granular materials such as sands and powders sometimes play important roles in science and engineering. In the numerical 
method DEM (discrete element method), the collisions between granular particles are described as classical spring force and 
friction force models. Particle simulations using the DEM have been commonly applied to study granular materials. Even 
in a spoon of sugar, there are more than 1 million grains. A large number of particles have to be used to simulate granular 
materials. Although coarse-graining models have been developed to reduce the particle number, it is quite meaningful to 
carry out DEM simulations with realistic-sized particles for quantitative granular analyses. Recent supercomputers perform 
well enough to carry out such granular simulations. Since granular material changes its particle distribution in time and space, 
it is necessary to introduce a dynamic load balance in spite of the large computation overhead. After developing several 
numerical methods for GPU implementation, we have succeeded in carrying out practical DEM applications using over 10 
million particles. A golf bunker shot simulation demonstrates quite realistic results.

Satori Tsuzuki   Seiya Watanabe   Takayuki Aoki
Global Scientific Information and Computing Center (GSIC) at Tokyo Institute of Technology
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 The equation of translational motion is described 

in classical mechanics in Eq. (1), and the right-hand side is the 

contribution from all the particles in contact.

where xi is the position of the i -th particle and xij is the penetration 

depth between the i -th and j -th particles. The notations k and γ

are the spring constant and dumping coefficient, respectively. 

In rotational motion, similar equations for the angular velocities 

with torques are solved, and the particle positions and velocities 

are updated by time integration with the leap-frog scheme or 

the Runge-Kutta method.

 All the dependent variables of particles are allocated 

to the device memory (so called “global memory” in CUDA 

programming). In the thread assignment for CUDA cores, one 

thread computes one particle motion by solving Eq. (1). 

 It is quite inefficient to make judgments on whether 

particles are in contact for all the particles. Neighbor-particle 

lists are commonly used to reduce the cost to find the particles 

in contact; however, the amount of memory needed to save the 

list in the cell often becomes a severe problem in large-scale 

simulations.

 The linked-list method is a candidate to reduce the 

memory use as shown in Fig. 2 [1][2]. Each particle has a memory 

pointer referring to the next particle in the same cell. Using chain 

access we can reduce the memory usage to 1/8.

Large-scale DEM Simulations for Granular Dynamics

Fig. 1   DEM computational model.

Fig. 2   Neighbor particle search using linked-list  
 method on GPU.

Fig. 3   Dynamic load balance based on 
 two-dimensional slice-grid method.

In large-scale DEM simulations requiring a lot of GPUs, the 

computational domain is decomposed into subdomains. A GPU 

is assigned to each subdomain and computes particles located 

in the subdomain. Since particle distributions change in time 

and space, static domain decomposition does not keep the same 

number of particles in each subdomain. The slice-grid method [3] 

is introduced to maintain equal numbers of particles to keep 

the memory usage equal and the computational load balance 

among GPUs. Figure 3 illustrates that the vertical boundaries of 

the subdomains move first to keep the vertical load balance of 

the horizontal subdomain group, and the horizontal boundaries 

of the subdomains move individually next.

 To determine the moving distance of the previous 

subdomain boundary, we have to count the particles located 

near the boundary. We propose an efficient way to find near-

boundary particles on “global memory” without copying the 

particle data to the host CPU memory. The subdomain is divided 

with a proper space       , as shown in Fig. 4, and we count the 

particle number within the       space by means of the Thrust 

library. The particles in the neighbor subdomain after moving 

the boundary are transferred there through the PCI-Express bus. 

When the neighbor subdomain is allocated to a different node, 

the data transfer includes the node-to-node communication by 

the MPI library.

Multi-GPU DEM simulation using 
Dynamic Load Balance 3
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Fig. 4   Particle counting and boundary 
 moving on GPU.

Fig. 6   Agitation simulation using 4,120,000 
 particles on 64 GPUs.

Fig. 5   Defragmentation of particle data 
 on GPU device memory.

We examined the performance of our DEM simulation on the 

TSUBAME 2.5 supercomputer with GPUs (NVIDIA Tesla K20X) with 

the dynamic load balance based on the 2-dimensional slice-grid 

method. The scalabilities are studied for the agitation simulation 

shown in Fig. 6 in the range of 2 M (million) to 1.0 billion particles.

 In Fig. 7, the vertical axis indicates the performance 

defined as the particle number divided by the elapsed time. The 

solid lines indicate strong scalability with 2M (2 million), 16M, 

and 129M particles, respectively. The square symbols show the 

results with 2M particles using 4 to 64 GPUs, the triangles denote 

16M particles using 32 to 256 GPUs, and the cross marks are with 

129M particles using 256 to 512 GPUs. According to Fig. 7, the 

performances keep improving in proportion to the number of 

GPUs with 8 to 16-fold and become sluggish with more than 

16 GPUs when using 2M particles.

 We study the weak scalability by comparing the 

performances for 2M, 16M, and 129M particles using 4 GPUs, 

32 GPUs, and 256 GPUs, respectively. It was found that the 

weak scalability was degraded from the ideal dashed line with 

increasing GPU number. Some subdomains have shapes with 

high-aspect ratio and particles move across the boundary easily, 

so the amount of data communication increases and the total 

performance becomes worse. It is meaningful that we succeeded 

in a large-scale DEM simulation with 129M particles on 512 GPUs 

regardless of low parallel efficiency.

Strong and Weak scalabilities on 
TSUBAME 2.5 4

 Frequent data transfer of particles among subdomains 

causes fragmentation of the GPU memory, which degrades 

the access performance and memory usage. In Fig.  5, a 

defragmentation should be executed with a proper frequency in 

spite of the overhead of data movement to the host memory.
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Fig. 7   Scalabilities of DEM simulation on 
 TSUBAME 2.5.

Fig.9   Conveyor simulation using 4,330,000 
 particles on 64 GPUs.

Fig.10   Sand simulation on spiral slider using 
 4,160,000 particles on 32 GPUs.

To solve the problems when interacting with complex shapes 

of objects, the contact judgment is easily done by introducing 

the signed-distance function from the object surface. When 

we have the CAD data of the object, we have the distance from 

the object surface at the particle positions instead of having to 

calculate the minimum distance from all the polygons of the 

CAD data, as shown in Fig. 8[4].

Application to practical problems 5

 As a typical simulation of granular structure 

interaction, we apply our code to a simulation for a golf bunker 

shot that had been studied by 2-dimensional simulation in 

previous studies [5] due to the computational cost. We have 

successfully performed a 3-dimensional DEM simulation by 

using 16.7M particles with a realistic particle size on 64 GPUs of 

TSUBAME 2.5, which has never been done before. To have the 

initial condition called “eye-ball”, we carried out a simulation of a 

golf ball falling on the sand in advance. We determine the swing 

path of the sand wedge by using a model based on a rotational 

or double pendulum. The swinging speed of the sand wedge 

is 5.0 m/s at the head edge. Figure 11 shows a snapshot of the 

simulation with 0.4-mm particles representing typical silica sand. 

The golf ball is pushed by the sand without the iron head of the 

sand wedge hitting it.

 Figure 9 shows the simulation for a granular conveyor 

with 4,330,000 particles on 64 GPUs. The sand sliding down on 

the spiral structure is demonstrated with 4,160,000 particles on 

32 GPUs, as shown in Fig. 10.

Fig. 8   Representation of object shape using 
 Level Set method.

Large-scale DEM Simulations for Granular Dynamics
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Fig.11   Golf bunker shot with 16.7M particles on 64 GPUs.

Fig.12   Tetrahedral non-spherical particle.

Real granular particles are not spherical. Using the model of 

non-spherical particles, we can conduct more realistic granular 

simulations [6]. It requires much higher computational cost and 

larger memory even if we use a simple model in which several 

spherical particles are rigidly connected. We carried out a large-

scale simulation for a foot stamp using 405,000 tetrapod-shaped 

particles that consist of the same four spherical particles located 

at the vertex of a tetrahedron as shown in Fig. 12.

 The numerical results are shown in Fig. 13 in 

comparison with using spherical particles. The footprint with 

the tetrahedral particles is clearly visible, and the shear friction is 

enhanced due to the inter-locking among tetrahedral particles.

DEM simulations using Non-spherical 
particles 6
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（a）   Using spherical particles

（b）   Using tetrahedral non-spherical particles

By introducing a dynamic load balance, we successfully 

performed large-scale DEM simulations with a maximum of 

129M particles on a GPU supercomputer, TSUBAME 2.5. The 

two-dimensional slice-grid method works well as a dynamic 

domain decomposition to keep equal memory consumption and 

computational load balance.

 We applied the simulation code to several practical 

problems including a golf bunker shot, and the scalabilities were 

also examined. In addition, it is found that we can conduct more 

realistic granular simulations by using non-spherical particles.

Conclusion 7

Fig.13   Foot stamp simulations.

Large-scale DEM Simulations for Granular Dynamics
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