専門科目 電気電子系

2020 大修

時間 9:30 ~ 12:10

必須科目: 数学, 電磁気学

選択科目: 電気回路, 量子力学/物性基礎

目 次

数学	2
電磁気学	4
電気回路	7
量子力学/物性基礎	9

注意事項

- 1. 解答はそれぞれ指定された答案用紙に記入せよ。
- 2. すべての答案用紙の受験番号欄に受験番号を記入せよ。
- 3. 答案用紙の裏面には記入しないこと。
- 4. 答案用紙のホチキスは取り外さないこと。
- 5. 選択科目(電気回路, 量子力学/物性基礎)はどちらか1科目を選択して解答すること。

数学

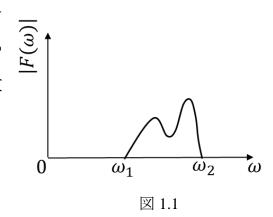
1. 絶対積分可能な実関数 f(t) ($\int_{-\infty}^{\infty} |f(t)|dt < \infty$) に対してフーリエ変換 $F(\omega)$ が $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$

と定義される。ただし、 $j^2=-1$ である。以下の問に答えよ。なお、答えには $F(\omega)$ 、もしくは $F(\omega)$ の ω を適宜変更した関数を含めてよい。(150 点)

1) $R(\omega), X(\omega), \varphi(\omega)$ を実関数として, $F(\omega) = R(\omega) + jX(\omega) = |F(\omega)|e^{-j\varphi(\omega)}$ と書いたとき, $F(-\omega)$ は $F(\omega)$ の複素共役に等しい。

下記の $1 \sim 4$ に「偶関数」「奇関数」「いずれでもない」のどれか1つを入れよ。

- $R(\omega)$ | I
- 2) f(at) のフーリエ変換を求めよ。なお、a は正の実数である。
- 3) $f(t-t_0)$ のフーリエ変換を求めよ。ただし、 t_0 は正の実数である。
- 4) f(t) の微分 f'(t)のフーリエ変換を求めよ。導出過程も書くこと。
- 5) $f(t)e^{-j\omega_0t}$ のフーリエ変換を求めよ。 ω_0 は正の実数である。
- 6) $f(t)\cos(\omega_0 t)$ のフーリエ変換を求めよ。導出過程も書くこと。
- 7) f(t)を実関数として、 $g(t) = f(t)\cos(\omega_0 t)$ のフーリエ変換の絶対値 $|G(\omega)|$ の概形を $\omega \ge 0$ について描け。なお、f(t) のフーリエ変換の絶対値 $|F(\omega)|$ は $\omega \ge 0$ について図 1.1 のとおりであり、図中の ω_1 、 ω_2 はいずれも正の実数で ω_0 よりも十分小さいとする。



数学

- **2.** 不定積分と微分方程式に関する以下の問に答えよ。ただし、問 2) c), d)の解答は導出過程も含めて記述すること。(150 点)
- 1) 次の不定積分を求めよ。答のみを示せ。
 - a) $\int \frac{1}{x^2+4} dx$
 - b) $\int \frac{4x}{x^2+1} dx$
- 2) 式(2.1)で表される微分方程式がある。ただし、yはxの関数とし、 $x \neq 0$ とする。また、 $\log x$ はxの自然対数を表す。このとき、以下の問に答えよ。

$$\frac{dy}{dx} = \frac{3x + 2y - 4}{2x - 3y + 6} \tag{2.1}$$

a) 定数a,bを用いてx,yをk = x - a, m = y - bと書き直すと、式(2.1)の左辺はdy/dx = dm/dkとなる。また式(2.1)の右辺は式(2.2)のように定数項を含まない形で表すことができた。このとき、a,bを求めよ。

$$\frac{dm}{dk} = \frac{3k + 2m}{2k - 3m} \tag{2.2}$$

- b) 式(2.2)の左辺について、u=m/k (k>0)と置いて変形すると、dm/dkはuとkの関数となる。このとき、dm/dkをdu/dk、u 、kを用いて表せ。
- c) 式(2.2)の右辺についても前問 b)と同様にu = m/k (k > 0)と置いて変形すると、式(2.2)はdu/dk = E/Dの関係式で表すことができる。ただし、Dはuのみの関数であり、E = 3/kとする。このとき、Dを表せ。
- d) 前問 c)の関係式より式(2.2)の一般解を求めると、 $F-3\log k+C=0$ (Cは任意定数) を得る。関数Fをuを用いて表せ。ただし、微分や積分を含まずに表すこと。
- e) x = 1 においてy = 2とし、前間 d)より式(2.1)の特殊解を求めると、 $4\tan^{-1}G 3\log H = 0$ を得る。関数Gと関数Hをxとyを用いて表せ。ただし、微分や 積分を含まずに表すこと。

- 1. 設問 1) \sim 2)を通して全ての領域で誘電率を ϵ_0 とする。(150点)
- 1) 図 1.1 のように、単位体積当たりの電荷密度 ρ (> 0) が一定で、半径が a の球状に分布した電荷がある。以下の問に答えよ。
 - a) 球の中心 O から距離 r(>0) の点における電界の大きさ E を求め、r に対する変化の 概略をグラフに示せ。
 - b) 球の中心 O から距離 r の点における電位 V を求め,r に対する変化の概略をグラフに示せ。ただし,無限遠を電位の基準(V=0)とする。
 - c) 図 1.1 のように球の中心 O を原点として直交座標のx,y,z 軸を定めたとき, r < a の位置におけるx,y,z 各方向の電界成分 E_x,E_y,E_z を求めよ。

原点から点(x,y,z)方向の単位ベクトルが $\left(\frac{x}{r},\frac{y}{r},\frac{z}{r}\right)$ であることを利用せよ。ただし, $r=\sqrt{x^2+y^2+z^2}$ である。

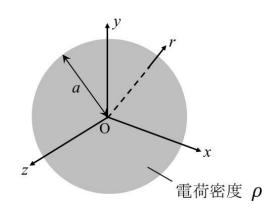


図 1.1

- 2)
- a) 図 1.2 のように、図 1.1 の球状に分布した電荷に、位置(d,0,0)を中心とする半径bの 球状に分布した電荷を追加した。ただし、d>0 および b+d<aであり、電荷を追加した領域の単位体積当たりの電荷密度は一定値 $\rho+\rho_1$ になった。 新しく電荷を追加した領域内部でのx, y, z 各方向の電界成分 E_x , E_y , E_z を求めよ。
- b) 図 1.3 のように、図 1.1 の球状に分布した電荷のうち、位置(d,0,0)を中心とする半径 bの球内の電荷を取り去ると、この領域内部では電界の方向と大きさが一定となる。 その方向と大きさを求めよ。ただし、a)と同じくd>0およびb+d<aとする。

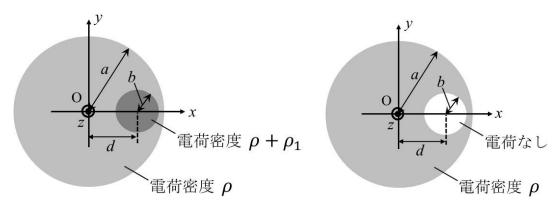
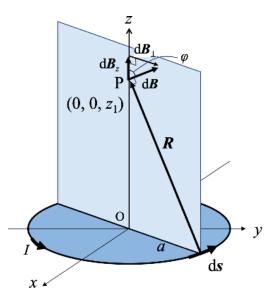


図 1.2

図 1.3

電磁気学

- 2. 直流電流の作る磁界に関する,以下の設問 1) および 2)に答えよ。(150 点)
- 1) x-y 平面上で,原点 O を中心とする半径 a の円周を直流電流 I が流れている。 この時,z 軸上の点 $P(0,0,z_1)$ における磁束密度 B_1 を求めたい。その導出に関する以下の文章の空欄①~⑥を,適切な式または言葉で埋めよ(同一の番号には同一の式または言葉が入る)。なお,真空の透磁率を μ_0 とする。本間では,ベクトルはボールド体で表記するものとする。



「図 2.1 のように円電流の微小線素ベクトル ds が、P の位置に作る磁束密度を dB とし、これを dB_z とそ

図 2.1

れに垂直な成分 $\mathbf{d}\mathbf{B}_{\perp}$ に分け、 $\mathbf{d}\mathbf{B}_{z}=|\mathbf{d}\mathbf{B}_{z}|$ とする。 $\mathbf{d}\mathbf{B}_{\perp}$ については円電流全体からの寄与を合計すると消しあうので、積分すると $|\mathbf{B}_{\perp}|=(\ \mathbb{O}\)$ となる。次に $\mathbf{d}\mathbf{B}_{z}$ を求める。微小線素 $\mathbf{d}\mathbf{s}$ から点 \mathbf{P} に向かうベクトルを \mathbf{R} とし、その大きさ \mathbf{R} を $\mathbf{R}=|\mathbf{R}|$ と定義すると、

- (②)の法則により、外積を×で表すものとして $d\textbf{\textit{B}} = \frac{m_0}{4\rho} I \frac{d\mathbf{s} \cdot \textbf{\textit{R}}}{R^3}$ である。 $d\mathbf{s} \geq \textbf{\textit{R}}$ は直交しているので、 $d\textbf{\textit{B}}$ の大きさ $d\textbf{\textit{B}} = |d\textbf{\textit{B}}|$ を μ_0 , I, a, z_1 および $d\mathbf{s} = |d\mathbf{s}|$ を用いて表すと $d\textbf{\textit{B}} = (3)$ となる。一方、 $d\textbf{\textit{B}}$ と z 軸のなす角 φ につき、a および z_1 を用いると、 $\cos \varphi = (4)$ となる。そこで μ_0 , I, a, z_1 および $d\mathbf{s}$ を用いて $d\textbf{\textit{B}}_z = (5)$ を得る。⑤を円電流全体について積分することにより、 μ_0 , I, a, z_1 を用いて $\mathbf{\textit{B}}_1$ の z 成分 $\mathbf{\textit{B}}_z$ を $\mathbf{\textit{B}}_z = (6)$ と表すことができる。よって、直交座標成分で書くと $\mathbf{\textit{B}}_1 = (1)$ 、(1)、(1)0、(2)0、(3)0 と、(3)1 が求められた。」
- 2) 図 2.2 のように、断面が長方形のコアに細い導線が巻かれた環状コイルがあり(図の破線部分にもコイルは存在する)、その内半径はa、外半径はb、厚さはb であるとする。コアの表面に沿って、導線は十分に密に巻かれており、巻き数は全体でb である。このとき、以下の設問に答えよ。ただし、コアの透磁率をb とする。

電磁気学

a) コアの内側 $(a < r < b, 0 \le \theta < 2\pi, -h/2 < z < h/2)$ では、図 2.2 のような円柱座標系 (r, θ, z) を用いると、コイルに流れる直流電流 J による磁界が

$$B_r = B_z = 0$$
, $B_\theta = \mu NJ/(2\pi r)$

となることを示せ。

- b) コアの外側では、コイルに流れる直流電流Jによる磁界がゼロとなることを説明せよ。
- c) コアの断面 (a < r < b, -h/2 < z < h/2) を貫く磁束 Φ は、次式で表されることを示せ。ただし、 $\ln(x)$ はxの自然対数を表す。

$$F = \frac{mNJh}{2\rho} \ln\left(\frac{b}{a}\right)$$

- d) 環状コイル全体に蓄えられた磁界のエネルギーU を求めよ。
- e) この環状コイルの自己インダクタンス L を求めよ。

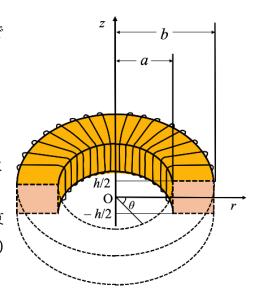
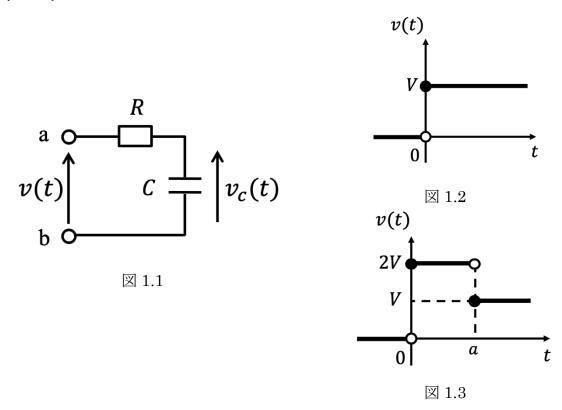
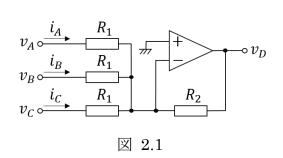


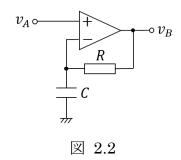
図 2.2

- 1. 図 1.1 の回路について以下の間に答えよ。回路の抵抗をR, キャパシタンスをCとする。ただし,t=0におけるキャパシタの電荷を0とする。また図 1.2,図 1.3 の時間軸において,黒丸は範囲の端を含み,白丸は範囲の端を含まないものとする。(100 点)
- 1) 回路の両端 ab に印加する電圧をv(t), キャパシタの電圧を $v_c(t)$ とする。回路方程式を $R,C,v(t),v_c(t)$ を用いて表せ。
- 2) v(t)として図 1.2 に示す電圧を回路の両端 ab に印加した。回路方程式を解いて、 $t \ge 0$ に おける $v_c(t)$ を求めよ。ただし、Vは正とする。
- 3) 十分に時間が経ったときのキャパシタの静電エネルギーを求めよ。
- 4) v(t)として図 1.3 に示す2VからVに変化する電圧を回路の両端 ab に印加した。 $v_c(t)$ を求めよ。ただし,t=0におけるキャパシタの電荷を0とし,Vおよびaは正とする。
- 5) 問 4)において $t \ge a$ のときキャパシタが放電した。a,R,Cに成り立つ関係式を求めよ。
- 6) 問 4)においてR,Cを調整したところ、 $t \ge a$ において回路に流れる電流が 0 となった。 t = 0からaまでに、抵抗Rで消費された電力量をC,Vを用いて求めよ。
- 7) 問 6)においてt=0からaまでに端子 ab から供給された電力量をC,Vを用いて求めよ。



- 2. 理想オペアンプを用いた回路について以下の間に答えよ。ただし、理想オペアンプの電圧利得は無限大、入力インピーダンスは無限大、出力インピーダンスはゼロである。また、 v_A 、 v_B , v_C , v_D は交流電圧, i_A , i_B , i_C は交流電流、 ω は角周波数、j は虚数単位とする。なお、間 3)、4)、6)については答だけでなく導出過程も示せ。(100 点)
- 1) 図 2.1 の増幅回路において、入力 v_A , v_B , v_C と出力 v_D の間の関係式を求めよ。
- 2) 図 2.1 の増幅回路の入力インピーダンス v_A/i_A , v_B/i_B , v_C/i_C を求めよ。
- 3) 図 2.2 のフィルタ回路の周波数伝達関数 $H(j\omega) = v_B/v_A$ を求めよ。
- 4) 図 2.2 のフィルタ回路の出力(右側端子)を図 2.3 のフィルタ回路の入力(左側端子) に接続したとき,角周波数によらず常に $v_c = v_A$ となるための条件式を,C, C', R, R' を用いて書き表せ。
- 5) 図 2.4 の回路は入力電圧の時間微分に比例した電圧を出力する。比例定数 k を求めよ。
- 6) 図 2.5 の回路の入力インピーダンス $Z_{\rm in}=v_A/i_A$ をインピーダンス Z_1 , Z_2 , Z_3 で表せ。
- 7)図 2.5 のインピーダンス Z_2 の素子をキャパシタンス C のキャパシタとし,インピーダンス Z_1 , Z_3 の素子をそれぞれ抵抗 R_1 , R_3 とすることで,入力インピーダンス $Z_{\rm in}=j\omega L_{\rm e}$ が得られる。 $L_{\rm e}$ を求めよ。





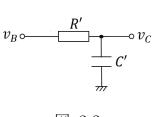


図 2.3

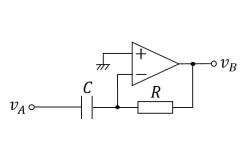


図 2.4

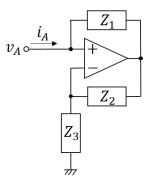


図 2.5

問題分野

量子力学/物性基礎

1. 図 1.1 のような一次元のポテンシャル

$$U(x) = \begin{cases} +\infty & (領域 0: x < 0) \\ -U_0 & (領域 1: 0 \le x \le a) (U_0 > 0) \\ 0 & (領域 2: a < x) \end{cases}$$

の中に閉じ込められた質量m, エネルギーE $(-U_0 < E < 0)$ の粒子を考える。(100点)

1) 以下の文中の空欄 ① ~ ② に入る適当な数式を記せ:

領域 1, 2 で波動関数をそれぞれ $\Psi_1(x)$, $\Psi_2(x)$ と表すとき、それぞれの領域で成り立つシュレディンガー方程式は、プランク定数を h, $h=h/(2\pi)$ とすると、

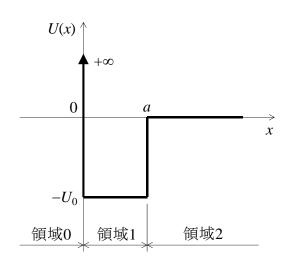


図 1.1

領域 1:
$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi_1(x) - \boxed{1} = E\Psi_1(x), \cdots (1.1)$$

領域 2: $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi_2(x) = \boxed{2} \cdots (1.2)$

となる。(1.1)を変形すると,

$$\frac{d^2}{dx^2}\Psi_1(x) = -k_1^2\Psi_1(x) \cdots (1.3)$$

となる。ただし,

$$k_1 = \boxed{3} \cdots (1.4)$$

である。したがって $\Psi_1(x)$ の一般解は、定数 A_1 と B_1 を用いて、

$$\Psi_1(x) = A_1 \sin(k_1 x) + B_1 \times \boxed{4} \cdots (1.5)$$

と書ける。一方, (1.2)を変形すると,

$$\frac{d^2}{dx^2}\Psi_2(x) = k_2^2\Psi_2(x) \cdots (1.6)$$

となる。ただし、

$$k_2 = \boxed{5} \cdots (1.7)$$

である。したがって $\Psi_2(x)$ の一般解は、定数 A_2 と B_2 を用いて、

$$\Psi_2(x) = A_2 \times \boxed{\text{(6)}} + B_2 e^{k_2 x} \cdots (1.8)$$

問題分野

量子力学/物性基礎

と書ける。ここで、x < 0 で $U(x) = \infty$ であるから、波動関数の連続条件より、

$$\Psi_1(x=0) = \boxed{?} \cdots (1.9)$$

でなければならない。したがって(1.5)で $B_1 = \boxed{\$}$ … (1.10)である。よって,

$$\Psi_1(x) = \boxed{9} \cdots (1.11)$$

となる。一方,領域2では

$$\lim_{x \to \infty} \Psi_2(x) = \boxed{1} \cdots (1.12)$$

でなければならないので、(1.8)で $B_2 = \boxed{1}$ … (1.13)となる。よって、

$$\Psi_2(x) = \boxed{2} \cdots (1.14)$$

が得られる。

- 2) x=a で $\Psi_1(x)$ と $\Psi_2(x)$ が満たすべき関係を記し、それを用いて定数 A_1 、 B_1 、 A_2 、 B_2 を消去し、 k_1 、 k_2 、aの間に成り立つ関係式を求めよ。
- 3) エネルギー $E = -U_0/2$ の固有状態が存在するために必要な最小の a を, m, \hbar , U_0 を用いて表せ。計算の過程も示すこと。

2. 熱平衡状態にある真性半導体について考える。エネルギーEの状態を電子が占有する確率を表すフェルミ・ディラック分布関数F(E)は次のように与えられる。

$$F(E) = \frac{1}{1 + \exp[(E - E_{\rm F})/(kT)]}$$

ここで、 E_F はフェルミ準位、kはボルツマン定数、Tは絶対温度である。 $T \neq 0$ として、以下の問に答えよ。(100点)

1) $E = E_F$ におけるF(E)の傾き $[\partial F(E)/\partial E]_{E=E_F}$ を求めよ。

答案用紙の図 2.1 および図 2.2 のグラフは, ある温度 T_1 (> 0)におけるF(E)の概形である。 ただし、横軸は $E-E_{\rm F}$ 、縦軸は占有確率である。

- 2) 問 1)の結果を考慮し、温度 $T_2 = 2T_1$ におけるF(E)の概形を図 2.1 に描け。
- 3) エネルギーE の状態を正孔が占有する確率 $F_h(E)$ を E, E_F , k, T を用いて表せ。また,温度 T_1 における $F_h(E)$ の概形を図 2.2 に描け。
- 4) 電子の占有確率F(E)において、分母の指数関数の項が1に比べて十分に大きいとき、F(E)をボルツマン分布関数に近似できる。正孔の占有確率 $F_h(E)$ に対しても同様に考えることができる。 $F_h(E)$ をボルツマン分布関数に近似せよ。

以下, $F_h(E)$ をボルツマン分布関数に近似して考える。エネルギーE における正孔密度p(E)は, $p(E)=G_h(E)F_h(E)$ で与えられる。ここで, $G_h(E)$ は価電子帯の正孔の状態数を表す状態密度関数(単位エネルギー,単位体積あたり)であり, $G_h(E)=\frac{1}{2\pi^2}\left(\frac{2m_h^*}{\hbar^2}\right)^{3/2}(E_V-E)^{1/2}$ である。 m_h^* は正孔の状態密度有効質量, E_V は価電子帯上端のエネルギーである。また,プランク定数をhとすると, $\hbar=\frac{h}{2\pi}$ である。

量子力学/物性基礎

- 5) p(E)が最大となるエネルギー E_1 を導出過程も含めて答えよ。
- 6) 価電子帯の正孔密度pは次の式で与えられる。

$$p = \int_{-\infty}^{E_{V}} p(E) dE = 2 \left(\frac{m_{h}^{*} kT}{2\pi \hbar^{2}} \right)^{3/2} \times \exp\left(\boxed{1} \right)$$

空欄 ① にあてはまる数式を導出過程も含めて答えよ。必要ならば下記の積分公式を用いてもよい。

$$\int_0^\infty x^{1/2} \exp(-x) dx = \frac{\pi^{1/2}}{2}$$