Tokyo Tech News
Tokyo Institute of Technology merged with Tokyo Medical and Dental University to form Institute of Science Tokyo (Science Tokyo) on October 1, 2024.
Over time, content on this site will be migrated to the Science Tokyo Web. Any information published on this site will be valid in relation to Science Tokyo.
Tokyo Tech News
Published: June 30, 2017
A research group of Tokyo University of Agriculture and Technology, Tokyo Institute of Technology, Keio University and Tohoku University have successfully developed an artificial cytoskeletal structure for cell models (liposomes1 or artificial cells) using DNA nanotechnology,2 and demonstrated that liposomes with the cytoskeletal structure were almost as strong as living cells.
Liposomes have been used as a material in many common products such as capsules for drug delivery and cosmetics. However, the membrane is fragile, leading to problems such as collapse of liposomes by slight stimulus, causing the entrapped compounds to easily leak. To improve the function of liposome as a capsule, it has been needed to develop a method that can toughen liposomes and control their strength.
In order to increase the strength of liposomes, Miho Yanagisawa at Tokyo University of Agriculture and Technology, Masahiro Takinoue at Tokyo Institute of Technology(Tokyo Tech), and their colleagues developed a network structure of DNA that supported membranes similar to a cytoskeleton in living cells using DNA nanotechnology (Figure 1A). The DNA strands used in this study bind to each other and create a network structure by decreasing temperature (Figure 1B). Also, since DNA has negative electric charge, using the attractive force between DNA and the inner layer of liposome with positive charge, they succeeded in forming a DNA cytoskeleton that directly supported the liposome membrane as backing. Liposomes are generally easy to collapse even when a slight osmotic pressure was applied to liposomes. In contrast, liposomes with the DNA cytoskeleton they developed were tolerant of an osmotic pressure even when the applied osmotic pressure was comparable to that assumed to be applied in our body (Figure 2). This reinforcement function is derived from the network structure of DNA; also, there is an advantage that the strength of the DNA cytoskeleton can be control by the DNA base sequence design. In addition, since the artificial cytoskeleton is formed using DNA, it is expected to impart various functions such as induction of membrane collapse based on DNA chemical reactions for controlled release of entrapped compounds.
This research results are published on the online version of Proceedings of the National Academy of Sciences of the United States of America on June 26, 2017.
An artificial lipid bilayer membrane vesicle mainly composed of lipids. It is used in various fields such as modeling of cell membranes, drug delivery, and cosmetics.
A technology to create nanometer-sized (1/1,000,000th of a millimeter) structures in a controlled manner by utilizing the nature of double helix formation of DNA. In this study, the network structure created by DNA was produced and utilized for the construction of an artificial cytoskeleton.
Reference
Authors: |
Chikako KUROKAWAa, Kei FUJIWARAb, Masamune MORITAc, Ibuki KAWAMATAd, Yui KAWAGISHId, Atsushi SAKAIa, Yoshihiro MURAYAMAa, Shin-ichiro M. NOMURAd, Satoshi MURATAd, Masahiro TAKINOUEc,*, Miho YANAGISAWAa,* |
Title of original paper: |
DNA cytoskeleton for stabilizing artificial cells |
---|---|
Journal: |
Proceedings of the National Academy of Sciences of the United States of America |
DOI: |
|
Affiliations: |
aDepartment of Applied Physics, Tokyo University of Agriculture and Technology bDepartment of Biosciences and Informatics, Keio University cDepartment of Computer Science, Tokyo Institute of Technology dDepartment of Robotics, Tohoku University |
School of Computing
—Creating the Future Information Society—
Information on School of Computing inaugurated in April 2016
Further Information
Associate Professor Miho Yanagisawa
Division of Advanced Applied Physics, Institute of Engineering,
Tokyo University of Agriculture and Technology
Email myanagi@cc.tuat.ac.jp
Tel +81-42-388-7113
Associate Professor Masahiro Takinoue
Department of Computer Science, School of Computing,
Tokyo Institute of Technology
Email takinoue@c.titech.ac.jp
Tel +81-45-924-5654
Contact
Public Relations Section,
Tokyo Institute of Technology
Email media@jim.titech.ac.jp
Tel +81-3-5734-2975