The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes

(Tokyo, 12 July) Researchers revealed that Atg13 links autophagy initiation factors to each other using a string-like conformation, thereby promoting the association of diverse elements of the autophagy initiation machinery, initiating autophagosome formation through the recruitment of Atg9 vesicles and phosphorylation of various Atg factors.

In order to live, it is necessary for creatures not only to synthesize essential components, but also degrade harmful or superfluous components. Autophagy, an intracellular degradation system conserved among eukaryotes from yeast to humans, contributes to cell homeostasis via isolating and degrading various unnecessary components within cells. Since autophagy dysfunction is linked to severe diseases such as neurodegeneration and cancer, the artificial control of autophagy promises to facilitate the development of therapeutic and preventive treatment for these and severe diseases.

In budding yeast, the Atg1 complex, comprising Atg1, Atg13, Atg17, Atg29 and Atg31, mediates the initiation of autophagy (Figure 1). When autophagy is induced by starvation, these five components gather to form a dimer of pentamers. However, the formation of the dimer of pentamers alone is not sufficient for autophagy induction: and dozens of the pentameric complexes need to assemble into a supramolecular complex of autophagy initiation machinery elements. However, the molecular mechanism has been elusive.

This mystery has been addressed by Honorary Prof. Yoshinori Ohsumi and Dr. Hayashi Yamamoto at Tokyo Institute of Technology, and Drs. Nobuo N. Noda and Yuko Fujioka at Institute of Microbial Chemistry, in collaboration with other researchers. The researchers focused on Atg13 and analysed its structure and function in vitro. The data revealed that Atg13 has an intrinsically disordered, string-like conformation in solution and that Atg13 has
two distinct binding regions for Atg17. Detailed analyses of the interaction between Atg13 and Atg17 by X-ray crystallography uncovered that Atg13 links two Atg17 molecules to each other using two binding regions. Analysis of the size of the Atg1 complex revealed that Atg1 complexes are linked to each other by Atg13, which results in the formation of a huge autophagy initiation complex (Figure 2).

When point mutations that impair the formation of this giant complex were introduced to Atg13, association of the autophagy initiation machinery was completely blocked. These data suggest that the supramolecular complex resulting from the linkage of Atg1 complexes to each other by Atg13 functions as the autophagy initiation machinery in vivo.

Next, the function of the autophagy initiation machinery was studied in budding yeast, revealing that the phosphorylation activity of Atg1 is markedly enhanced when it is incorporated into the supramolecular autophagy initiation complex. Moreover, it was revealed that the autophagy initiation machinery efficiently recruits Atg9 vesicles, which serve as membrane sources for autophagosome formation, and phosphorylates Atg9. These data collectively suggest that the autophagy initiation machinery not only mediates formation of initial isolation membrane through the recruitment of Atg9 vesicles, but also promotes autophagosome formation via phosphorylating autophagy-related factors including Atg9 (Figure 3).

These results are an important step in our quest to fully understand the molecular mechanisms of autophagy initiation and autophagosome formation. A better understanding of the mechanisms of the initial steps of autophagy promises to allow the development of
compounds that specifically regulate autophagy, with exciting clinical implications for the
treatment of a range of serious conditions.

Reference
Yamamoto, H.¹, Fujioka, Y.², Suzuki, S. W.³, Noshiro, D.⁴, Suzuki, H.², Kondo-Kakuta, C.¹,
Kimura, Y.⁴, Hirano, H.³, Ando, T.³, Noda, N. N.², Ohsumi, Y.¹,*, The intrinsically disordered
protein Atg13 mediates supramolecular assembly of autophagy initiation complexes,
Developmental Cell, DOI: 10.1016/j.devcel.2016.06.015

1. Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
2. Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan.
3. Department of Physics, College of Science and Engineering, Kanazawa University,
Kanazawa 920-1192, Japan.
4. Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004,
Japan.

*Corresponding authors email: yohsumi@iri.titech.ac.jp or nn@bikaken.or.jp

Contact
Emiko Kawaguchi
Center for Public Affairs and Communications,
Tokyo Institute of Technology
E-mail. media@jim.titech.ac.jp
+81-3-5734-2975

Dr. Katsuhisa Yamazaki
Department of Intellectual Property and Public relations
Institute of Microbial Chemistry (BIKAKEN)
E-mail. yamazakik@bikaken.or.jp
+81-3-3441-4173

About Tokyo Institute of Technology
Tokyo Institute of Technology stands at the forefront of research and higher education as
the leading university for science and technology in Japan. Tokyo Tech researchers excel in a
variety of fields, such as material science, biology, computer science and physics. Founded in
1881, Tokyo Tech has grown to host 10,000 undergraduate and graduate students who
become principled leaders of their fields and some of the most sought-after scientists and
engineers at top companies. Embodying the Japanese philosophy of “monotsukuri,”
meaning technical ingenuity and innovation, the Tokyo Tech community strives to make
significant contributions to society through high-impact research.
Website: http://www.titech.ac.jp/english/

About Institute of Microbial Chemistry
Institute of Microbial Chemistry was established in 1962 by the Microbial Chemistry Research Foundation under the directorship of Dr. Umezawa. The institute has since given rise to numerous beneficial pharmaceuticals, including kasugamycin, which is highly effective against rice blast, and bleomycin, which was the world’s first target-specific anticancer agent. Furthermore, the institute pioneered research into the mechanism of resistance in strains resistant to aminoglycoside antibiotics such as streptomycin and kanamycin. This background has led to microbiology, medicine, and organic synthetic chemistry becoming the main pillars of the institute's research activities.
Website: http://www.bikaken.or.jp/english/index.php