Graduate Major in Materials Science and Engineering

[Master's Degree Program]

1. Outline

Major of Materials Science and Engineering aims at nurturing research scientists and engineers who have deep insight into materials properties and reactivity, and ability to develop innovative materials with creative and practical minds, and with excellent understanding of the social problems and requirements. Through the advanced educational system, the students are expected to learn innovative materials development and the global competence to contribute to human welfare and the sustainability.

Advanced course works and research supervision are provided in order to acquire the knowledge and skills to act as a sophisticated scientist and engineer. Through the course works and the individual supervision, students are expected to acquire the expert knowledge of materials science, the profound understanding of the relationship between technology and the environment, logical thinking and a strategical way to solve problems, and international communication skills as a global leader who is competent in the industry and in the academic.

2. Competencies Developed

The students are expected to acquire,

- Expert knowledge of materials science and engineering.
- Ability to apply the knowledge in the actual research and to develop the advanced materials.
- Ability to solve the problems with the understanding of the global issues.
- Writing and presentation skills competent to the global standard.

3. Learning Goals

The students are expected to learn,

- A) Advanced expert knowledge in the field of materials science and engineering.
- A wide variety of course works provide advanced knowledge of materials science and engineering.

B) Ability to apply the knowledge to practical research and development, by using the expert knowledge to solve the individual problems, and by learning the research and development in industry to acquire the practical way of thinking.

- C) English presentation skills in the field of materials science and engineering, acquiring presentation skills through discussion with international scientists.
- D) Interdisciplinary views of the academic community,

by improving communication skills through domestic and international collaboration, and by acquiring the ability to evaluate the research perspective and output from the global point of view.

4. IGP Completion Requirements

The following requirements must be met to complete the Master's Degree Program of this major.

- 1. A total of 34 credits or more, acquired from 400- and 500-level courses.
- 2. From the courses specified by the Graduate Major in Materials Science and Engineering curriculum,
 - 4 credits acquired from "Research Seminars";
 - 3 credits or more, acquired from "Research-related courses (Materials Research Methodologies)";
 - 16 credits or more, acquired from the subject in 400- and 500-level Major Courses, including Research Seminars and Research-related courses (Materials Research Methodologies);
 - 18 credits or more, acquired from the subjects in 400- and 500-level Core Courses of this major;
 - a minimum of 5 credits, acquired from Liberal Arts and Basic Science Courses;

(3 credits from the Humanities and Social Science Courses of which 2 credits must be from

400-level courses and 1 credit from 500-level courses, and 2 credits from Career Development

Courses).

3. Pass the master thesis review and defense.

Course cates	gory	<required courses=""></required>	<electives> Minimum</electives>	Minimum	Associated	Comme
				required	goals	IIIIS
Liberal arts	Humanities and social science courses		•2 credits from 400-level •1 credit from 500-level		B, D	
and basic science courses	Career development courses		2 credits	5 credits	B, D	
	Other courses					
	Research seminars	Seminar in Materials Science and Technology S1 Seminar in Materials Science and Technology F1 Seminar in Materials Science and Technology S2			A, B, C, D	
		Seminar in Materials Science and Technology F2 A total of 4 credits, 1 credit each from the above courses.				
	Research-related courses		Materials Research Methodology I Materials Research		A, B, C, D	
Core courses			Methodology II Materials Research Methodology III Materials Research Methodology IV 3 credits or more acquired from Materials Research Methodologies	18 credits		
	Major courses		16 credits or more, acquired from the subject in 400- and 500-level Major Courses, including Research Seminars and Research-related courses (Materials Research Methodologies)		A, B, C, D	

Table M1. Graduate Major in Materials Science and Engineering Completion Requirements

	Major courses and Research-related courses <u>outside</u> the Graduate Major in Materials Science and Engineering standard curriculum					
Total required	credits	A minimum of 34 credits in	addition to meeting the above	e conditions		
Note		 Japanese Language and G Humanities and Social S As for Liberal Arts and B 	Culture Courses offered to In Science Courses of the corresp Basic Science Courses, please 1	ternational Stud ponding course l refer to the relev	ents can be rec evel. ant pages.	cognized as

5. IGP Courses

Table M2.	Core	Courses	of the	Graduate	Major in	Materials	Science and	Engineering
I GOIC ITIM	0010	Courses	or the	oradate	Triajor m	17 I WE I I WID	Science and	. Dinginieer mg

C	ourse	Course	Cou	rse	Credit	Compete	Learning	Comments
cat	tegory	number			s	ncies	goals	
	400	MAT.Z491.R	\odot	Seminar in Materials Science and	0-1-0	2,3,5	С	
Rese	level			Technology S1				
arch		MAT.Z492.R	0	Seminar in Materials Science and	0-1-0	2,3,5	С	
semi				Technology F1				
nars	500	MAT.Z591.R	\odot	Seminar in Materials Science and	0-1-0	2,3,5	С	
	level			Technology S2				
		MAT.Z592.R	\odot	Seminar in Materials Science and	0-1-0	2,3,5	С	
				Technology F2				
Re	400	MAT.A450.B	0	Materials Research Methodology I	0-1-0	1,2,4,5	B, C, D	
searc	level							
h-re		MAT.A451.B	0	Materials Research Methodology II	0-1-0	1,2,4,5	B, C, D	
lated								
cou	500	MAT.A550.B	0	Materials Research Methodology	0-1-0	1,2,4,5	B, C, D	
rses	level			III				
		MAT.A551.B	0	Materials Research Methodology	0-1-0	1,2,4,5	B, C, D	
				IV				
	400	MAT.M414.L		Advanced Metal Physics	2-0-0	2,3,5	А	[Energy
	level							Science and
M								Engineering
ijor ((ENR.J.401)
cours		MAT.M415.L		Physical Chemistry for High	1-0-0	3,5	А	[Energy
ses				Temperature Processes				Science and
				-Thermodynamics-				Engineering
								(ENR.J.402)

	MAT.M416.L			Physical Chemistry for High	1-0-0	3,5	А	[Energy
				Temperature Processes -Smelting				Science and
				and Refining Processes-				Engineering
								(ENR.J.403)
	MAT.M417.L			Physical Chemistry for High	1-0-0	3,4,5	А	[Energy
				Temperature Processes -Oxidation				Science and
				of Metals-				Engineering
								(ENR.J.404)
	MAT.M418.L		0	Microstructure Evolution and	2-0-0	3	А	[Energy
				Diffusion in Metals				Science and
								Engineering
								(ENR.J.405)
	MAT.C415.L			Nuclear Materials and Structures	2-0-0	3	А	Nuclear
								Engineering
								(NCL.N403)
	MAT.C407.L		Е	Advanced Course of Nano-Bionics	2-0-0	3,5	А	
	MAT.C410.L		0	Energy Conversion Ceramics	2-0-0	3	А	[Energy
				Materials				Science and
								Engineering
								(ENR.J408)
	MAT.C414.L		0	Introduction to Solid State Science	2-0-0	3	А	
	MAT.M401.L		0	Applied Diffraction	2-0-0	3,5	А	
				Crystallography in Metals and				
				Alloys				
	MAT.M402.L			Characterization of Nanomaterials	2-0-0	3	А	
	MAT.M403.L		0	Environmental Degradation of	2-0-0	3	А	
				Materials				
	MAT.M404.L		Е	Transport Phenomena at High	2-0-0	3,5	А	
				Temperature				
	MAT.M405.L		Е	Advanced Microstructure Design	2-0-0	1,3,4	А	
				of Ferrous Materials				
	MAT.M406.L		0	Advanced Microstructure Design	2-0-0	3,5	А	
				of Non-ferrous Materials				
	MAT.M407.L		0	Advanced Solid State Physics	2-0-0	3,5	А	
	MAT.M408.L		Е	Quantum Statistical Mechanics	2-0-0	1,3,5	А	
		1						
	MAT.M409.L	1	0	Thermodynamics for Phase	2-0-0	3	А	
				Equilibria				
	MAT.M410.L		0	Deformation and Strength of Solids	2-0-0	3	А	

	MAT.M411.L	0	Phase Transformation and	2-0-0	3	А	
			Microstructure Control				
	MAT.M412.L	Е	Reliability and Durability of Metals	2-0-0	3,4,5	А	
			and Alloys				
	MAT.M419.L		Microscopic Characterization of	2-0-0	2,3,5	В	
			Solid Materials				
	MAT.M420.L		Metal Science on Development of	1-0-0	3,5	А	
			Aircraft Engine Materials				
	MAT.P403.L		Soft Materials Physics	1-0-0	1,3	А	
	MAT.P404.L		Soft Materials Functional Physics	1-0-0	2,3	А	
	MAT.P411.L	0	Soft Materials Chemistry I	1-0-0	3	А	
	MAT.P412.L	0	Soft Materials Chemistry II	1-0-0	3	А	
	MAT.P461.L	0	Advanced Course in Organic and	1-0-0	3	А	
			Soft Materials Chemistry A				
	MAT.P462.L	0	Advanced Course in Organic and	1-0-0	3	А	
			Soft Materials Chemistry B				
	MAT.P463.L		Advanced Course in Surface	1-0-0	3	А	
			Properties of Organic Materials A				
	MAT.P464.L		Advanced Course in Surface	1-0-0	3	А	
			Properties of Organic Materials B				
	MAT.P465.L		Advanced Course in Physical	1-0-0	3	А	
			Properties of Organic Materials A				
	MAT.P466.L		Advanced Course in Physical	1-0-0	3	А	
			Properties of Organic Materials B				
	MAT.P467.L	0	Advanced Course of Polymer	1-0-0	3	А	[Chemical
			Chemistry A				Science and
							Engineering
							(CAP.P467)
	MAT.P468.L	0	Advanced Course of Polymer	1-0-0	3	А	Chemical
			Chemistry B				Science and
							Engineering
							(CAP.P468)
	MAT. A462.L		Off-campus Project in Materials	0-0-1	1,2,5	B, D	
			Engineering B1				
	MAT. A463.L		Off-campus Project in Materials	0-0-2	1,2,5	B, D	
			Engineering B2				
500	MAT.C503.L		Advanced Course of Material	2-0-0	3	Α	
level			Development II				
	MAT.C506.L	Е	Advanced Course in Wettability	2-0-0	2,3,4,5	Α	
			Control of Solid Surface				

	MAT.C507.L	0	Advanced Photo-Electronic	2-0-0	3	А	
			Devices				
	MAT.C500.L	0	Advanced Course of Materials	2-0-0	3	А	
			Optics				
	MAT.P506.L		Advanced Polymer Design for	1-0-0	3	А	[Energy
			Energy Materials				Science and
							Engineering
							(ENR.H503)

Note :

 \cdot \odot : Required course, \bigcirc : Restricted elective, O : odd academic years, E : even academic years

• 🗆 : Course is recognized as an Academy for Co-creative Education of Environment and Energy Science, Leading Graduate School (ACEEES) course.

• Competencies: 1 = Intercultural skills; 2 = Communication skills; 3 = Specialist skills; 4 = Critical thinking skills;

5 = Practical and/or problem-solving skills

• [] Course offered under another graduate major.

• The character preceding the three digits in the course number denotes the course's subdiscipline (i.e., "D"

represents the subdiscipline code in the course number MAT.D400.R: R (required), L (Elective).

M: metals group, P: organic materials group, C: ceramics group, A: common

6. IGP Courses That Can be Recognized as Humanities and Social Science Courses

None

7. IGP Courses That Can be Recognized as Career Development Courses

As a general rule, students who would like their Career Development Courses to contribute to completion requirements of their master's degree program need to satisfy all of the specified Graduate Attributes ("GA"), including the attainment of at least two course credits, listed in Table MA-1 of the "Guide to Graduate Education and International Graduate Program (Liberal Arts and Basic Science Courses) - Career Development Courses". The status of the GA will be evaluated at the time of degree completion.

In addition to Career Development Courses, there are Major Courses that can also be recognized as such — shown below in Table M3 — which may go toward fulfilling the GA requirements.

However, note that when the corresponding Major Courses are recognized and accredited as Career Development Courses, their credits cannot be counted a second time (as Major Courses) towards degree completion requirements.

Table M3. Courses of the Graduate Major in Materials Science and Engineering that can be recognized as Career Development Courses

Course	Course	Cou	ırse	Credits	GA*	Learning	Comments
category	number					goals	
	MAT. A462.L		Off-campus Project in Materials	0-0-1	C1M	B, D	
can be			Engineering B1				
recognized							
as Career					C1M		
Developmen	MAT. A463.L		Off-campus Project in Materials Engineering B2	0-0-2		B, D	
t Courses							

To satisfy the Career Development requirement, credits may be acquired from courses listed above as well as from those listed under Career Development Courses (see the Liberal Arts and Basic Science Courses Guide).

*****GA : Graduate Attribute

8. Research Related to the Completion of Master Thesis

In the master's thesis research, students can learn how to set research proposal, and problem solving ability, and communication skills thorough a series of research process. Research progress is properly evaluated based on dissertation interim presentation.

Master thesis standards:

Master's thesis includes a useful knowledge to contribute to the materials development. It contains the new findings in the academic field of materials science, engineering or technology. Thesis must be an original paper written in English, containing its own consideration.

Review of Master thesis:

Review committee is organized by three or more evaluators. After the pre-review by professors, final examination is conducted by an oral presentation. In case that the student is an applicant for Doctor's Degree Program, his/her examination must been carried out by more than five reviewers in English.

[Doctoral Degree Program]

1. Outline

Doctor's degree program aims at nurturing an independent research scientist and engineer with advanced expert knowledge in the field of materials science and engineering. Students in this major are expected to acquire an innovative and challenging way of research and development as well as the competence as a global leader who contributes to the human welfare and the sustainability.

2. Competencies Developed

The students are expected to acquire,

- Independent ability to conduct innovative research and development by using advanced expert knowledge in the field of materials science and engineering.
- Ability to create innovative materials by using advanced expert knowledge in the field of materials science and engineering.
- Ability to solve the individual problems through the essential understanding of the global social issues and requirements.
- Competence as a global leader who can work as a principal investigator of a research group.

3. Learning Goals

The students are expected to learn,

A) Advanced expert knowledge in the field of materials science and engineering.

Students are requested to have expert knowledge deeper than the master course and to have the ability to apply the knowledge to innovative research and development.

B) Ability to solve the problems.

Students are requested to acquire the ability to find out the problems and the way to solve the problems by innovative thinking through discussion with expert scientists in the domestic and international community.

C) Competency as a global leader as well as the ability to systematize knowledge from experiments and research through paper writing and literature survey.

4. IGP Completion Requirements

The following requirements must be met to complete the Doctoral Degree Program of this major.

- 1. A total of 24 credits or more, acquired from 600-level courses.
- 2. From the courses specified in the Graduate Major in Materials Science and Engineering curriculum,
 - 12 credits acquired from Research Seminars; and
 - a minimum of 4 credits acquired from Major Courses;
 - 16 credits or more, acquired from the subject in 600-level Core Courses of this major;
 - a minimum of 6 credits acquired from Liberal Arts and Basic Science Courses

(2 credits must be from 600-level Humanities and social science courses, and 4 credits from Career development courses).

3. Pass the doctor thesis review and defense.

Course cates	gory	<required courses=""></required>	<electives></electives>	Minimum	Associated learning	Comme
		Required credits	Minimum	credits	goals	nts
			required	required		
	Humanities and		2 credits			
	social science		2 credits		С	
Liberal arts	courses					
and basic science courses	Career			6 credits	С	
	development		4 credits			
	courses					
	Other courses					
		Seminar in Materials Science and			A, B, C	
		Technology S3				
		Seminar in Materials Science and				
		Technology F3				
		Seminar in Materials Science and				
	Research seminars	Technology S4				
		Seminar in Materials Science and				
		Technology F4				
		Seminar in Materials Science and				
		Technology S5		16 credits		
		Seminar in Materials Science and				
		Technology F5				
Core courses		A total of 12 credits, 2 credits each				
		from the above courses.				
	Research-related					
	courses					
	Major courses		4 credits		A, B, C	
	Major courses and					
	Research-related					
	courses <u>outside</u> the					
	Graduate Major in					
	Materials Science					
	and Engineering					
	standard					
	curriculum					
Total required	credits	A minimum of 24 credits in additi	on to meeting th	e above condit	ions	

Table D1. Graduate Major in Materials Science and Engineering Completion Requirements

Note	• Japanese Language and Culture Courses offered to International Students can be recognized as
	Humanities and Social Science Courses of the corresponding course level.
	• As for Liberal Arts and Basic Science Courses, please refer to the relevant pages.

5. IGP Courses

Table D2	Core (Courses	of the	Graduate	Major in	Materials	Science and	Engineering
I able D2.	COLE	Courses	or the	Grauuate	wajor m	Iviatel lais	Science and	i Engineering

Course		Course	Cour	se	Credits	Compete	Learning	Comments
category		number				ncies	goals	
		MAT.Z691.R	O	Seminar in Materials Science and Technology S3	0-2-0	1,2,3,4,5	A,B,C	
Rese		MAT.Z692.R	O	Seminar in Materials Science and Technology F3	0-2-0	1,2,3,4,5	A,B,C	
arch semi	600	MAT.Z693.R	O	Seminar in Materials Science and Technology S4	0-2-0	1,2,3,4,5	A,B,C	
inars	level	MAT.Z694.R	O	Seminar in Materials Science and Technology F4	0-2-0	1,2,3,4,5	A,B,C	
		MAT.Z695.R	O	Seminar in Materials Science and Technology S5	0-2-0	1,2,3,4,5	A,B,C	
		MAT.Z696.R	O	Seminar in Materials Science and Technology F5	0-2-0	1,2,3,4,5	A,B,C	
		MAT.A661.L		Materials Off-campus Project 1	0-0-1	1,2,5	В	
		MAT.A662.L		Materials Off-campus Project 2	0-0-2	1,2,5	В	
		MAT.A663.L		Materials Off-campus Project 3	0-0-4	1,2,5	В	
		MAT.A664.L		Materials Off-campus Project 4	0-0-6	1,2,5	В	
М		MAT.A600.L		Materials Science Special Seminar I	0-1-0	2,3,4,5	В	
ajor cour	600 level	MAT.A601.L		Materials Science Special Seminar II	0-1-0	2,3,4,5	В	
ses		MAT.A602.L		Materials Science Special Seminar III	0-1-0	2,3,4,5	В	
		MAT.A603.L		Materials Science Special Seminar IV	0-1-0	2,3,4,5	В	
		MAT.A604.L		Practice Program of Topics Setup and Solution I	0-1-0	1,2,3,4,5	B, C	
		MAT.A605.L		Practice Program of Topics Setup and Solution II	0-1-0	1,2,3,4,5	B, C	
		MAT.A606.L		Practice Program of Topics Setup and Solution III	0-1-0	1,2,3,4,5	B, C	

		MAT.A607.L		Practice Program of Topics Setup and	0-1-0	1,2,3,4,5	B, C	
				Solution IV				
Note	:							
\bullet \odot : Required course, \bigcirc : Restricted elective, O : odd academic years, E : even academic years								
• 🗆 : Course is recognized as an Academy for Co-creative Education of Environment and Energy Science, Leading Graduate School (ACEEES)								
course.								
• Competencies: 1 = Intercultural skills; 2 = Communication skills; 3 = Specialist skills; 4 = Critical thinking skills;								
5 = Practical and/or problem-solving skills								
• [] Course offered under another graduate major.								
• The character preceding the three digits in the course number denotes the course's subdiscipline (i.e., "D"								
represents the subdiscipline code in the course number MAT.D400.R: R (required), L (Elective).								
М	M: metals group, P: organic materials group, C: ceramics group, A: common							

6. IGP Courses That Can be Recognized as Humanities and Social Science Courses

None

7. IGP Courses That Can be Recognized as Career Development Courses

As a general rule, students who would like their Career Development Courses to contribute to completion requirements of their doctoral degree program need to satisfy all of the specified Graduate Attributes ("GA"), including the attainment of at least four course credits, listed in Table A-1 or A-2 of the "Guide to Graduate Education and International Graduate Program (Liberal Arts and Basic Science Courses) - Career Development Courses". The status of the GA will be evaluated at the time of degree completion.

In addition to Career Development Courses, there are Major Courses that can also be recognized as such — shown below in Table D3 — which may go toward fulfilling the GA requirements.

However, note that when the corresponding Major Courses are recognized and accredited as Career Development Courses, their credits cannot be counted a second time (as Major Courses) towards degree completion requirements.

 Table D3-1. Courses of the Graduate Major in Materials Science and Engineering that can be recognized as Career

 Development Courses in the Academic Leader Program (ALP)

Course	Course number	Cours	se	Credits	GA*	Learning	Comments
category						goals	
	MAT.A661.L		Materials Off-campus Project 1	0-0-1	A1D,	В	
					A2D,		
					A3D		
can be	MAT.A662.L		Materials Off-campus Project 2	0-0-2	A1D,	В	
recognize					A2D,		
d as					A3D		
Career	MAT.A663.L		Materials Off-campus Project 3	0-0-4	AID	в	
Developm				0-0-4	A2D	Б	
ent					A3D		
Courses	MAT.A664.L		Materials Off-campus Project 4			_	
				0-0-6	A1D,	В	
					A2D,		
					A3D		

To satisfy the Career Development requirement, credits may be acquired from courses listed above as well as from those listed under Career Development Courses (see the Liberal Arts and Basic Science Courses Guide).

*GA : Graduate Attribute

 Table D3-2. Courses of the Graduate Major in Materials Science and Engineering that can be recognized as Career

 Development Courses in the Productive Leader Program (PLP)

Course	Course number	Cou	rse	Credits	GA*	Learning	Comments
category						goals	
	MAT.A661.L		Materials Off-campus Project 1	0-0-1	P1D,	В	
					P2D,		
					P3D		
can be	MAT.A662.L		Materials Off-campus Project 2	0-0-2	P1D,	В	
recognize					P2D,		
d as					P3D		
Career	MAT.A663.L		Materials Off-campus Project 3	0-0-4	PID	в	
Developm				0-0-4	P2D	D	
ent					1 2D, P2D		
Courses					FSD		
	MAT.A664.L		Materials Off-campus Project 4	0-0-6	P1D,	В	
					P2D,		
					P3D		

To satisfy the Career Development requirement, credits may be acquired from courses listed above as well as from those listed under Career Development Courses (see the Liberal Arts and Basic Science Courses Guide).

*****GA : Graduate Attribute

8. Research Related to the Completion of Doctoral Thesis

In the doctoral thesis research, students can learn the problem solving ability by deep scientific or engineering insight and communication skills as a global leader.

Doctoral thesis standards:

Doctoral thesis includes a novelty, sufficient academic value, and originality. Main chapters of thesis are published in an international journal or are at a level to be published. Thesis must be written in English.

Review of Doctoral thesis:

Review committee is organized by more than 5 evaluators. Evaluators from other universities or institute can be included in the committee. Examination is conducted through thesis submission, oral presentation, pre-review by evaluators, and final review and evaluation. In the final review, students' knowledge in the relevant field and English language skill are evaluated.