Graduate Major in Human Centered Science and Biomedical Engineering

[Master's Degree Program]

1. Outline

In recent years, the development of engineering and technology related to human healthcare, medicine and the environment conservation in academic fields of Materials and Chemical Technology, Mechanical Engineering, Electrical and Electronic Engineering, Information Technology, Life Science and Technology has been remarkable drastically. However, in present, most of disciplinary fields train students independently, and there are few examples of educational systems crossing these fields. In a globalized society, it is indispensable to learn integrated knowledge of a wide range of academic fields such as natural sciences, bioethics, the foundation of health, medical and environmental sciences, etc. for sustainable and rich human life. And also utilizing these knowledges and integrating them with the advanced technology of each disciplinary field are required for sustainable human society in future.

In this course, all research and development of engineering and technology regarding human healthcare, medicine and environment conservation, which has been conducted in each disciplinary field, were defined as "Human Centered Science and Biomedical Engineering" and the education and research to consider the correlation between human characteristics and artifact ones comprehensively are provided as based on the in-depth understanding of people and society. Thus, the course's goal is to foster talents who have a deep understanding of human being by acquiring the knowledge of natural sciences, bioethics, the foundation of health, medical and environmental sciences and also learn several disciplinary fields such as Materials and Chemical Technology, Mechanical Engineering, Electrical and Electronic Engineering, Information Technology, Life Science & Technology. That means to foster scientists and engineers who can contribute to the development of science & technology to protect people's health and realize a sustainable society. Moreover, by promoting the interaction among several disciplinary fields, we can expect to provide a new viewpoint to each field, as well as creating new disciplines for the future.

2. Competencies Developed

We foster scientists and engineers that have a deep understanding of human being by mastering natural sciences, bioethics, the foundation of health, medical and environmental sciences, and furthermore, by interdisciplinary learning academic fields of Materials and Chemical Technology, Mechanical Engineering, Electrical and Electronic Engineering, Information Technology, Life Science & Technology. In the Master's course, students learn advanced professional knowledge of Materials & Chemical Technology, Mechanical Engineering, Electric and Electronic Engineering, Information Technology, Life Science & Technology, and acquire high intelligence and liberal arts, broad perspective and deep thought ability, comprehensive decision-making ability, solid ethical and technological view, and global thinking. Based on these abilities, they study advanced research and development and learn task assignment skills and advanced problem-solving skills in academic research.

To be specific,

- Systematically learn professional knowledge and skills necessary for advanced research and development in Human
 Centered Science and Biomedical Engineering field based on professional knowledge of a disciplinary field, which
 student learned in the undergraduate course.
- 2. Learn high level advanced professional knowledge and skills by developing professional knowledge and skills which students acquired in their undergraduate.
- 3. Deepen one's professional ability and creativity through lab seminar, master research planning for master thesis subjects, and master thesis research.

3. Learning Goals

The learning goals of this course is to acquire the following abilities:

- A) Knowledge about natural sciences, bioethics, the foundation of health, medical & environmental sciences necessary for sustainable human life.
- B) Advanced professional knowledge and skills related with Human Centered Science and Biomedical Engineering in each disciplinary field.
- C) Fundamental expertise that can understand different disciplinary knowledge.
- D) Ability to challenge to explore new research & development areas.
- E) The ability that can set tasks in the society and solve these tasks by using one's skills and creativity.
- F) Communication skills that enables one to accurately communicate his or her ideas and skills to others.
- G) Leadership that enables one to collaborate on tasks.

4. IGP Completion Requirements

The following requirements must be met to complete the Master's Degree Program of this major.

- 1. A total of 30 credits or more acquired from 400- and 500-level courses.
- 2. Meet the completion requirements indicated in Table M1 below.
- 3. Pass the Master's thesis review and defense.

Table M1 shows the course classification and the number of credits required for completing the Master's course in this major. Table M2 shows core course groups in the Master's course of this major. Regarding courses whose name are listed in the remarks column in the table, they are also treated as "major courses" in this major.

Table M1. Graduate Major in Human Centered Science and Biomedical Engineering Completion Requirements

Course cate	gory	<required courses=""></required>	<electives></electives>	Minimum	Associated learning	Comme
		Required credits	Minimum credits required	credits required	goals	nts
Liberal arts and basic science courses	Humanities and social science courses Career development courses Other courses		•2 credits from 400-level •1 credit from 500-level 2 credits	5 credits	D, F	
	Research seminars	HCB Seminar S1 HCB Seminar F1 HCB Seminar S2 HCB Seminar F2 A total of 8 credits, 2 credits each from the above courses.			C, E	
	Research-related courses	Research Planning for Master Thesis I Research Planning for Master Thesis II A total of 2 credits		23 credits	C, E	
Core courses	Major courses	Joint Creative Design Interdisciplinary fundamentals I Interdisciplinary fundamentals II Interdisciplinary Research Training A total of 6 credits	3 credits from restricted electives 4 credits from others		A, B, D, E	
	Major courses and Research-related courses <u>outside</u> the Graduate Major in Human Centered Science and Biomedical					

	Engineering standard curriculum							
Total required	credits	A minimum of 30 credits in addition to meeting the above conditions						
Note		 Japanese Language and Culture Humanities and Social Science As for Liberal Arts and Basic S 	Courses of the	corresponding	course level.	ognized as		

5. IGP Courses

Table M2. Core Courses of the Graduate Major in Human Centered Science and Biomedical Engineering

Cours		Course	Cou	rse		Credits	Comp	Learning	Comments
catego	ory	number					etencie s	goals	
	400	HCB.Z491.R	0	*	HCB Seminar S1	0-2-0	2,3,5	C,E	
Research	level	HCB.Z492.R	0	*	HCB Seminar F1	0-2-0	2,3,5	С,Е	
Research seminars	500	HCB.Z591.R	0	*	HCB Seminar S2	0-2-0	2,3,5	C,E	
'S	level	HCB.Z592.R	0	*	HCB Seminar F2	0-2-0	2,3,5	C,E	
Research-re	400 level	HCB.C471.R	©	*	Research Planning for Master Thesis I	0-1-0	2,3,5	C,E	
Research-related courses	500 level	HCB.C571.R	©	*	Research Planning for Master Thesis II	0-1-0	2,3,5	C,E	
		HCB.C401.R	0	*	Joint Creative Design	0-2-0	2,3,4,5	A,C	
		HCB.C411.R	0	*	Interdisciplinary Research Fundamentals I	1-0-0	3	A	
		HCB.C412.R	0	*	Interdisciplinary Research Fundamentals II	1-0-0	3,5	A	
Majo	400	HCB.C413.R	0	*	Interdisciplinary Research Training	0-0-2	2,4,5	A,C	
Major courses	level	HCB.C421.A	0	*	Outline of Human Centered Science and Biomedical Engineering I	1-0-0	3,5	A	
		HCB.C422.A	0	*	Outline of Human Centered Science and Biomedical Engineering II	1-0-0	1,3	A	
		HCB.C431.A	0	*	Off Campus Training I	0-0-1	2,3,4,5	D	
		HCB.C432.A	0		Fundamentals of Research Application for Life Innovation	1-1-0	3,4,5	A,D	

HCB.C441.A	0	*	Presentation for Science and	1-0-0	1,2	Е	
певенни)	^	Engineering I	100	1,2	L	
HCB.C442.A	0	*	Presentation for Science and	1-0-0	1,2	E	
1105.0112.21)	^	Engineering II	100	1,2		
HCB.C451.L			Advanced Research Topics for Life	1-0-0	1,3,4,5	B,D	
HCB.C431.L			Innovation I	1-0-0	1,3,4,3	B,D	
HCB.C452.L			Advanced Research Topics for Life	1-0-0	1,3,4,5	B,D	
HCB.C432.L			Innovation II	1-0-0	1,3,4,3	B,D	
HCB.M461.L			Laboratory Training on Human Brain	0.5-0-0.5	2,3,5	В	
HCB.W401.L			Functions and Their Measurements	0.3-0-0.3	2,3,3	Б	
HCB.M462.L			Biological Systems and Modeling	1-0-0	3,5	В	
HCB.WI402.L			Biological Systems and Modeling	1-0-0	3,3	Б	
HCD M462 I			T . 1	1.0.0	1.0	D	0.011
HCB.M463.L		*		1-0-0	1,3	В	O: Odd year
		О	Instrumentation				in English
							E: Even year in
Wan Mark			.	1.00		_	Japanese
HCB.M464.L		*	Introduction to Neural Engineering	1-0-0	3	В	E: Even year in
		Е					English
							O: Odd year in
							Japanese
HCB.T408.L			Soft Materials Design	1-0-0	3,5	В	[Energy Science
							and Engineering]
							(ENR.J407)
HCB.T409.L			Introduction to Intellectual Property	2-0-0	3,5	F	[Energy Science
			System				and Engineering]
							(ENR.J409)
HCB.E431.L			Fundamentals of Light and Matter I	2-0-0	3	A	[Electrical and
							Electronic
							Engineering]
							(EEE.D431)
HCB.E451.L		*	Plasma Engineering	2-0-0	3	A	[Electrical and
							Electronic
							Engineering]
							(EEE.P451)
HCB.I409.L		*	Optics in Information Processing	1-0-0	3	В	[Information
		Е					and
							Communications
							Engineering]
							(ICT.H409)
							E: Even year in
							English
							O: Odd year in
							Japanese
					<u> </u>	<u> </u>	

HCB.I411.L	*	Basic Sensation Informatics	1-0-0	3,5	В	[Information
TICB.I411.E	E	Basic Schsation informatics	1-0-0	3,3	D D	and
	L					Communications
						Engineering]
						(ICT.H411)
						E: Even year in
						English
						O: Odd year in
						Japanese
HCB.I421.L	*	Medical Imaging Systems	1-0-0	3	В	[Information
HCB.1421.L	E	Medicai imaging Systems	1-0-0	3	D	and
	E					Communications
						Engineering]
						(ICT.H421)
						E: Even year in
						English
						O: Odd year in
HCD 1422 I		C I D	1.0.0		D.	Japanese
HCB.I422.L	*	Computational Brain	1-0-0	3	В	[Information
	О					and
						Communications
						Engineering]
						(ICT.H422)
						O: Odd year in
						English
						E: Even year
						in Japanese
HCB.T401.L			2-0-0	3,5	В	[Materials
		Ferroelectric Materials				Science and
						Engineering]
						(MAT.C401)
HCB.T407.L	*	Advanced Course of Nano-Bionics	2-0-0	1,2,3,5	В	[Materials
	Е					Science and
						Engineering]
						(MAT.C407)
						E: Even year in
						English
						O: Odd year in
						Japanese
HCB.T412.L		Polymeric Biomaterials	2-0-0	3,5	В	[Materials
						Science and
						Engineering]
						(MAT.C412)

HCB.T402.L	*	Characterization of Nanomaterials	2-0-0	3	В	[Materials
HCB.1402.L	^	Characterization of Nanomaterials	2-0-0		В	Science and
						Engineering]
						(MAT.M402)
						a Held in 4Q
						O: Odd year in
						Japanese
						E: Even year
						in English
						b Held in 3~4Q
						(in Tsinghua
						University),
						Every year in
YYOD THOSE			200	2.5	-	English
HCB.T406.L	*	· ·	2-0-0	3,5	В	[Materials
	О	Non-ferrous Materials				Science and
						Engineering]
						(MAT.M406)
						O: Odd year in
						English
						E: Even year in
						Japanese
HCB.T414.L	*	Reliability and Durability of Metals and	2-0-0	3,4,5	В	[Materials
	Е	Alloys				Science and
						Engineering]
						(MAT.M412)
						E: Even year in
						English
						O: Odd year in
						Japanese
HCB.T403.L	*	Soft Materials Physics	1-0-0	1,3	В	[Materials
						Science and
						Engineering]
						(MAT.P403)
HCB.T404.L	*	Soft Materials Functional Physics	1-0-0	2,3	В	[Materials
						Science and
						Engineering]
						(MAT.P404)
HCB.T413.L		Soft Materials Functional Chemistry	1-0-0	3,5	В	[Materials
						Science and
						Engineering]
						(MAT.P413)
HCB.T415.L		Chemistry of Organic Materials	1-0-0	3	В	[Materials
1102.1.10.2		- · · · · · · · · · · · · · · · · · · ·				1. Tatoriais

								Engineering]
								(MAT.P415)
	HCB.T422.L			Organic Materials Design	1-0-0	3,5	В	[Materials
								Science and
								Engineering]
								(MAT.P422)
	HCB.T426.L			Thermal Properties of Materials	1-0-0	3,5	В	[Materials
								Science and
								Engineering]
								(MAT.P426)
	HCB.T491.L			Materials Engineering and Ecology	1-0-0	2,4,5	В	[Materials
								Science and
								Engineering]
								(MAT.P491)
	HCB.T416.L			Catalysis for the Environmental Issues	1-0-0	3	В	[Chemical
								Science and
								Engineering]
								(CAP.I416)
	HCB.L401.L		*	Molecular and Cellular Biology	2-0-0	3,4	В	[Life Science
				<i>-</i>				and Technology]
								(LST.A401)
	HCB.L405.L		*	Design of Bioactive Molecules	2-0-0	3	В	Life Science
				C				and Technology]
								(LST.A405)
	HCB.L407.L		*	Science of Metabolism	2-0-0	3,4,5	В	[Life Science
								and Technology]
								(LST.A407)
	HCB.L410.L		*	Advanced Neuroscience	2-0-0	3,5	В	Life Science
								and Technology
								(LST.A410)
	HCB.L411.L		*	Biomolecular Engineering	2-0-0	1,3,5	В	[Life Science
								and Technology]
								(LST.A411)
	HCB.L412.L		*	Biomaterial Science and Engineering	2-0-0	1,3,4,5	В	[Life Science
								and Technology
								(LST.A412)
	HCB.A561.L			Nanobio Materials and Devices	2-0-0	1,3	В	1
	HOD GET :				100	10-		
500	HCB.C521.A	0	*		1-0-0	1,3,5	A	
level				Biomedical Engineering I				
level	HCB.C522.A	0	*		1-0-0	3,4,5	A	
				Biomedical Engineering II				<u> </u>
	HCB.C531.A	0	*	Off Campus Training II	0-0-2	2,3,4,5	D	
								<u> </u>

HCB.C532.A	0	*	Off Campus Training III	0-0-4	2,3,4,5	D	
					,-,,-		
HCB.C541.A	0	*	International Writing	1-0-0	1,2,4,5	Е	
HCB.C542.A	0	*	International Presentation I	0-1-0	1,2,3,4,	Е	
HCB.C543.A	0	*	International Presentation II	0-1-0	1,2,3,4,	Е	
11021001011			11011111111111111111111111111111111111		5	2	
HCB.C551.L			Advanced Research Topics for Life	1-0-0	1,3,4,5	D	
			Innovation III				
HCB.C552.L			Advanced Research Topics for Life	1-0-0	1,3,4,5	D	
			Innovation IV				
HCB.M561.L			Medical Robotics	1-0-0	3,4	В	
HCB.M562.L			Fabrication and Application	1-0-0	3	В	
HCB.M302.L			Technology of Bio-MEMS	1-0-0	3	Б	
HCB.E533.L		*		1-0-0	3	В	[Electrical and
		0					Electronic
							Engineering]
							(EEE.D533)
							O: Odd year in
							English
							E: Even year in
							Japanese
HCB.I514.L		*	Mechanisms of Visual Perception	1-0-0	3,5	В	【Information
		О					and
							Communications
							Engineering]
							(ICT.H514)
							O: Odd year in
							English
							E: Even year in
HOD TOO ! !			E d' ID '	200	1.2	D	Japanese
HCB.T504.L			Functional Devices	2-0-0	1,3	В	Materials Science and
							Engineering]
HCB.A531.L			Advanced Catalytic Descripts I	1-0-0	3	В	(MAT.C504)
ncd.Assi.L			Advanced Catalytic Reactions I	1-0-0	3	O.	Science and
							Engineering]
							(CAP.T531)
HCB.A532.L			Advanced Catalytic Reactions II	1-0-0	3	В	(CAP.1331)
11CD.A332.L			Assumed Catalytic Reactions II	10-0		5	Science and
							Engineering]
J	<u> </u>						gg1

							(CAP.T532)
	HCB.L501.L	*	Biomolecular Analysis	2-0-0	3,5	В	[Life Science
							and Technology]
							(LST.A501)
	HCB.L502.L	*	Science of Biological Resources	2-0-0	3,5	В	[Life Science
							and Technology]
							(LST.A502)
	HCB.L504.L	*	Medical Biotechnology	2-0-0	1,3,5	В	[Life Science
							and Technology]
							(LST.A504)

Note:

- ⊚ : Required course, : Restricted elective, ★: Course given in English, O : Odd academic years, E : Even academic years
- □ : Course is recognized as an Academy for Co-creative Education of Environment and Energy Science, Leading Graduate School (ACEEES) course.
- Competencies: 1 = Intercultural skills; 2 = Communication skills; 3 = Specialist skills; 4 = Critical thinking skills;
 - 5 = Practical and/or problem-solving skills
- [] Course offered under another graduate major
- The character preceding the three digits in the course number denotes the course's subdiscipline (i.e., "D" represents the subdiscipline code in the course number ABC.D400.R): A (Applied Chemistry), C (Common Major Courses), E (Electrical and Electronic Engineering), I (Information Technology), L (Life Science and Technology), M (Material Technology), Z (Research seminars)

6. IGP Courses That Can be Recognized as Humanities and Social Science Courses

None

7. IGP Courses That Can be Recognized as Career Development Courses

As a general rule, students who would like their Career Development Courses to contribute to completion requirements of their master's degree program need to satisfy all of the specified Graduate Attributes ("GA"), including the attainment of at least two course credits, listed in Table MA-1 of the "Guide to Graduate Education and International Graduate Program (Liberal Arts and Basic Science Courses) - Career Development Courses". The status of the GA will be evaluated at the time of degree completion.

In addition to Career Development Courses, there are Major Courses that can also be recognized as such — shown below in Table M3 — which may go toward fulfilling the GA requirements.

However, note that when the corresponding Major Courses are recognized and accredited as Career Development Courses, their credits cannot be counted a second time (as Major Courses) towards degree completion requirements.

Table M3. Courses of the Graduate Major in Human Centered Science and Biomedical Engineering that can be recognized as Career Development Courses

Course	Course	Cou			Credits	GA*	Learning	Comments
category	number	304						
····· • • • • • • • • • • • • • • • • •	HCB.C432.A	0		Fundamentals of Research Application	1-1-0	COM	A,D	
	11021010211			for Life Innovation		C1M	1,2	
	HCB.C431.A	0	*		0-0-1	C1M	D	
	11021010111			on campus raming r		011.1		
	HCB.C531.A	0	*	Off Campus Training II	0-0-2	C1M	D	
				, , , , , , , , , , , , , , , , , , ,				
	HCB.C532.A	0	*	Off Campus Training III	0-0-4	C1M	D	
	ICT.J405			Strategic ICT Policy Planning	2-0-0	C0M	С	[Information
						C1M		and
								Communications
								Engineering]
	CAP.E521			Scientific Ethics	1-0-0	C0M	D	[Chemical
								Science and
								Engineering]
	CAP.E422			Presentation Practice	0-1-0	C1M	Е	[Chemical
								Science and
b-								Engineering]
can be recognized	LST.A413			Career Development Seminars	2-0-0	C0M	B,D,E	[Life Science
as Career						C1M		and Technology]
Developmen	LST.C501		*	MS Internship 1	0-1-0	C1M	D,E	[Life Science
t Courses								and Technology]
t Courses	LST.C502		*	MS Internship 2	0-2-0	C1M	D,E	[Life Science
								and Technology
	LST.C503		*	MS Internship 3	0-4-0	C1M	C,D,E	[Life Science
								and Technology
	LST.C504		*	MS Internship 4	0-6-0	C1M	C,D,E	[Life Science
								and Technology]
	LST.C505			Short-term Internship on Computational	0-0-1	C0M	B,D	[Life Science
				Life Sciences				and Technology]
	ACL.C401		*	International Internship on	0-0-4	C1M		[Education
				Computational Life Sciences for				Academy of
				Master's Students				Computational
								Life Sciences
	ACE.C537		*		0-1-0	C1M		[Academy for
				Publishing				Co-creative
								Education of
								Environment and
								Energy Science

ACE.D543			Policy Making	1-0-0	C1M	[Academy for
						Co-creative
						Education of
						Environment and
						Energy Science]
ACE.D541	0	*	Global Business Strategy and	1-0-0	C0M	[Academy for
			Standardization & Intellectual Property			Co-creative
			I			Education of
						Environment and
						Energy Science
ACE.D542		*	Global Business Strategy and	0-1-0	C0M	[Academy for
			Standardization & Intellectual Property			Co-creative
			п			Education of
						Environment and
						Energy Science
ACE.C531		*	Leadership for Energy Specialists	1-0-0	C0M	 [Academy for
					C1M	Co-creative
						Education of
						Environment and
						Energy Science

○: course from this major, ★: course given in English

To satisfy the Career Development Courses requirement, credits may be acquired from courses listed above as well as from those listed under Career Development Courses (see the Liberal Arts and Basic Science Courses Guide).

*GA: Graduate Attribute

8. Research Related to the Completion of Master's Theses

In the Master's thesis research, students experience a series of the research process and aim to improve problem-setting ability, problem-solving ability and communication skills. An example of the flow of the Master's thesis research for this is shown below. The evaluation of the academic outcome is carried out as appropriate. Students also consider the course plan as related to direction of their thesis research.

· Presentation of Research Plan and Interim presentation

It is important to conduct research systematically and check the progress to produce research results. Students conduct "Presentation of Research Plan" (Research Planning for Master Thesis I) in 4Q and "Interim presentation" (Research Planning for Master Thesis II) in 6Q to understand their research background and purpose clearly.

· Judgement criterion of the final defense of Master's Thesis

The Master's thesis and its overview must be written in Japanese or English by the student. The thesis must include the student's original consideration, and also include new findings in Human Centered Science and Biomedical Engineering field or useful research that contributes to the development of Human Centered Science and Biomedical Engineering field.

• Implementation manner of the final defense of Master's Thesis

After the preliminary review by the advisors, the final examination and evaluation will be carried out in the oral presentation of the thesis. The oral presentation must be done in Japanese or English.

9. Seamless Transition Between Degree Programs

In the graduate major of Human Centered Science and Biomedical Engineering, we foster basic academic knowledge to understand human and society deeply, expertise in science and engineering, a wide perspective, deep thought ability, comprehensive decision-making skill, ethical and technological views, internationality, and cutting-edge technological development and problem setting and solving abilities in advanced academic research and development of technology. The learning goals of this course is to acquire the following abilities.

- Knowledge about natural sciences, bioethics, the foundation of health, medical and environmental sciences necessary for research and development in Human Centered Science and Biomedical Engineering field.
- The ability that can set tasks in the society and solve these tasks by using one's skills and creativity.
- · Communication skills that enables one to accurately communicate his or her ideas and skills to others.
- Leadership that enables one to collaborate on tasks.

[Doctoral Degree Program]

1. Outline

In the Doctoral course, we foster superior talents who will contribute to human beings' happiness and the development of science and technology by (1) having the highest degree of professional knowledge in Materials and Chemical Technology, Mechanical Engineering, Electrical and Electronic Engineering, Information Technology, and Life Science and Technology, (2) obtaining the professional knowledge in natural sciences, bioethics, the foundation of health, medical and environmental sciences, (3) having the ability to promote advanced research and development ingenious and challenging by the above professional knowledge, and (4) exhibiting creativity and international leadership capable of exploiting new fields.

To be specific,

- Acquire advanced professional knowledge in own research field through lab seminar and research planning for doctoral thesis subjects, and cultivate a wide range of outstanding expertise and ethics in the field of Human Centered Science and Biomedical Engineering.
- Foster leadership skills, internationality and communication skills in teaching method and international presentation subjects, and obtain career experience by conducting international internship and research working in company subjects.
- 3. Foster outstanding creativity, task setting ability and problem-solving skills that can lead the international community through conducting the world's highest level of research in doctoral thesis research.

2. Competencies Developed

The learning objective of this Doctoral course is to acquire the following abilities with a higher standard than the Master's course to achieve the goals above.

- Knowledge about natural sciences, bioethics, the foundation of health, medical and environmental sciences necessary for research and development in Human Centered Science and Biomedical Engineering field.
- Advanced professional knowledge and skills related with Human Centered Science and Biomedical Engineering in each disciplinary field.
- Fundamental expertise that can understand different disciplinary knowledge.
- Ability to challenge to explore new research & development areas.
- The ability that can set tasks in the society and solve these tasks by using one's skills and creativity.
- · Communication skills that enables one to accurately communicate his or her ideas and skills to others.
- Leadership that enables one to collaborate on tasks.

3. Learning Goals

The learning objective of this Doctoral course is to acquire the following abilities with a higher standard than the Master's course to achieve the goals above.

- Knowledge about natural sciences, bioethics, the foundation of health, medical and environmental sciences necessary for research and development in Human Centered Science and Biomedical Engineering field.
- Advanced professional knowledge and skills related with Human Centered Science and Biomedical Engineering in each disciplinary field.
- Fundamental expertise that can understand different disciplinary knowledge.

- Ability to challenge to explore new research and development areas.
- The ability that can set tasks in the society and solve these tasks by using one's skills and creativity.
- · Communication skills that enables one to accurately communicate his or her ideas and skills to others.
- Leadership that enables one to collaborate on tasks.

4. IGP Completion Requirements

The following requirements must be met to complete the Doctoral Degree Program of this major.

- 1. A total of 24 credits or more acquired from 600-level courses.
- 2. Meet the completion requirements indicated in Table D1 below.
- 3. Pass the doctoral dissertation review and defense.

Table D1. Graduate Major in Human Centered Science and Biomedical Engineering Completion Requirements

Course cateş	gory	<required courses=""></required>	<electives></electives>	Minimum credits	Associated learning	Comme nts
		Required credits	credits	required		
Liberal arts	Humanities and social science courses		required 2 credits		D, F	
and basic science courses	Career development courses		4 credits	6 credits	D, F	
	Other courses					
	Research seminars	HCB Seminar S3 HCB Seminar F3 HCB Seminar S4 HCB Seminar F4 HCB Seminar S5 HCB Seminar F5 A total of 12 credits, 2 credits each from the above courses.		18 credits	C, E	
Core courses	Research-related courses	Research Planning for Doctoral Thesis I Research Planning for Doctoral Thesis II A total of 4 credits				
	Major courses		2 credits		A, B, D, E	
	Major Courses and Research-related courses outside the Graduate Major in Human Centered Science and Biomedical Engineering standard curriculum					
Total required	credits	A minimum of 24 credits in additi	on to meeting th	e above condit	ions	

Note	• Japanese Language and Culture Courses offered to International Students can be recognized as Humanities and Social Science Courses of the corresponding course level.
	• As for Liberal Arts and Basic Science Courses, please refer to the relevant pages.

5. Courses

Table D2. Core Courses of the Graduate Major in Human Centered Science and Biomedical Engineering

Course		Course	Co	urse		Credits	Comp	Learning	Comments
category		number					etencie	goals	
							s		
		HCB.Z691.R	0	*	HCB Seminar S3	0-2-0	2,3,5	C,E	
R		HCB.Z692.R	0	*	HCB Seminar F3	0-2-0	2,3,5	C,E	
Research seminars	600	HCB.Z693.R	0	*	HCB Seminar S4	0-2-0	2,3,5	С,Е	
seminar	level	HCB.Z694.R	0	*	HCB Seminar F4	0-2-0	2,3,5	С,Е	
S		HCB.Z695.R	0	*	HCB Seminar S5	0-2-0	2,3,5	С,Е	
		HCB.Z696.R	0	*	HCB Seminar F5	0-2-0	2,3,5	С,Е	
Research-	600	HCB.C671.R	0	*	Research Planning for Doctoral Thesis I	0-2-0	1,2,3,4,	С,Е	
Research-related courses	level	HCB.C672.R	0	*	Research Planning for Doctoral Thesis II	0-2-0	1,2,3,4,	С,Е	
		HCB.C601.A		*	Teaching methods for Human Centered Science and Biomedical Engineering S1	1-0-1	2,3,4,5	С,Е	
		HCB.C602.A		*	Teaching methods for Human Centered Science and Biomedical Engineering F1	1-0-1	2,3,4,5	С,Е	
Major		HCB.C631.A		*	HCB International Internship	0-0-4	1,2,3,4, 5	B,C,D	
Major courses	600	HCB.C632.A			Research Working in Company	0-2-2	3,5	B,C,D	
	level	HCB.C633.A		*	HCB off-Campus advanced training 1	0-0-1	2,3,4,5	B,C,D	
		HCB.C634.A		*	HCB off-Campus advanced training 2	0-0-2	2,3,4,5	B,C,D	
		HCB.C641.A		*	International Presentation III	0-1-0	1,2,3,4, 5	Е	
		HCB.C642.A		*	International Presentation IV	0-1-0	1,2,3,4, 5	Е	

Note:

ullet \odot : Required course, $\,\star\,$: Course given in English, $\,$ O : Odd academic years, $\,$ E : Even academic years

- 🗆 : Course is recognized as an Academy for Co-creative Education of Environment and Energy Science, Leading Graduate School (ACEEES) course.
- Competencies: 1 = Intercultural skills; 2 = Communication skills; 3 = Specialist skills; 4 = Critical thinking skills;
- 5 = Practical and/or problem-solving skills
- [] Course offered under another graduate major
- The character preceding the three digits in the course number denotes the course's subdiscipline (i.e., "D" represents the subdiscipline code in the course number ABC.D600.R): C (Common Major Course), Z (Research seminars)

6. IGP Courses That Can be Recognized as Humanities and Social Science Courses

None

7. IGP Courses That Can be Recognized as Career Development Courses

As a general rule, students who would like their Career Development Courses to contribute to completion requirements of their doctoral degree program need to satisfy all of the specified Graduate Attributes ("GA"), including the attainment of at least four course credits, listed in Table A-1 or A-2 of the "Guide to Graduate Education and International Graduate Program (Liberal Arts and Basic Science Courses) - Career Development Courses". The status of the GA will be evaluated at the time of degree completion.

In addition to Career Development Courses, there are Major Courses that can also be recognized as such — shown below in Table D3 — which may go toward fulfilling the GA requirements.

However, note that when the corresponding Major Courses are recognized and accredited as Career Development Courses, their credits cannot be counted a second time (as Major Courses) towards degree completion requirements.

Table D3-1. Courses of the Graduate Major in Human Centered Science and Biomedical Engineering that can be recognized as Career Development Courses in the Academic Leader Program (ALP)

Course	Course	Co	urse	2	Credits	GA*	Learning	Comments
category	number						goals	
	HCB.C631.A	0	*	HCB International Internship	0-0-4	A2D	B,C,D	
						A3D		
	HCB.C632.A	0		Research Working in Company	0-2-2	A2D	B,C,D	for Graduate
						A3D		Program for
								Working Adults
can be								students
recognized	HCB.C633.A	0	*	HCB off-Campus advanced training 1	0-0-1	A1D	B,C,D	
as Career						A2D		
Developmen						A3D		
t Courses	HCB.C634.A	0	*	HCB off-Campus advanced training 2	0-0-2	A1D	B,C,D	
						A2D		
						A3D		
	LST C601		*	PhD Internship 1	0-1-0	A1D	A,C,E	Life Science and
						A2D		Technology]
						A3D		

	LST.C602	*	PhD Internship 2	0-2-0	A1D	A,C,E	Life Science and
	LS1.C002	*	FIID IIICHISHIP 2	0-2-0		A,C,E	Technology]
					A2D A3D		reciniology]
	LET CO2		DLD Intermedia 2	0.4.0		ADCE	I Life Seignes and
	LST.C603	*	PhD Internship 3	0-4-0	A1D A2D	A,B,C,E	【Life Science and Technology】
							reciniology]
	LST.C604		DLD Intermedia 4	0-6-0	A3D A1D	ARCE	Life Science and
	LS1.C604	*	PhD Internship 4	0-6-0	A1D A2D	A,B,C,E	Technology]
					A3D		reciniology [
	LST.C605		Career Development in Industry	0-0-4	A3D A2D	A,B,C,E	Life Science and
	LS1.C003		Career Development in industry	0-0-4	A3D	A,b,C,E	Technology]
					ASD		for Graduate
							Program for
							Working Adults
							students
	LST.C607	*	IGP Off-Campus Training I	0-1-0	A1D	A,C,E	Life Science and
	LS1.C007	^	101 Off-Campus Training 1	0-1-0	A2D	A,C,E	Technology]
					A3D		for IGP Students
	LST.C608	*	IGP Off-Campus Training II	0-1-0	A3D A1D	A,C,E	Life Science and
	LS1.C006		for On-Campus Training ii	0-1-0	A2D	A,C,E	Technology]
					A3D		for IGP Students
	ACL.C601	*	International Internship on Computational	0-0-4	A3D A1D		[Education
	ACL.Coor		Life Sciences for Doctoral Students	0-0-4	A2D		Academy of
			Life Sciences for Doctoral Students		A3D		Computational
					ASD		Life Sciences
	ACL.A601		Introduction to Business Plan for Doctoral	1-0-0	A0D		[Education
	ACL.A001		Students	1-0-0	AoD		Academy of
			Students				Computational
							Life Sciences
	ACE.D644		Career Planning	1-0-0	A0D		[Academy for
	TICE.DOTT		Caron Filaming	100	1102		Co-creative
							Education of
							Environment and
							Energy Science
	ACE.E651	+	Co-creative Education Off-Campus	0-0-4	A0D	1	[Academy for
			Project A (Overseas)		A1D		Co-creative
			, (<u>,</u>		A2D		Education of
							Environment and
							Energy Science
	ACE.E652		Co-creative Education Off-Campus	0-0-4	A0D		[Academy for
			Project B (Overseas)		A1D		Co-creative
			, , , ,		A2D		Education of
							Environment and
							Energy Science
<u> </u>	1	1 1		<u>I</u>	1	1	

ACE.E653	Co-creative Education Off-Campus	0-0-4	A0D	[Academy for
	Project C (in Japan)		A1D	Co-creative
			A2D	Education of
				Environment and
				Energy Science
ACE.E654	Co-creative Education Off-Campus	0-0-4	A0D	[Academy for
	Project D (in Japan)		A1D	Co-creative
			A2D	Education of
				Environment and
				Energy Science
ACE.E659	Policy Internship A	0-0-4	A0D	[Academy for
			A1D	Co-creative
			A2D	Education of
				Environment and
				Energy Science
ACE.E660	Policy Internship B	0-0-4	A0D	[Academy for
			A1D	Co-creative
			A2D	Education of
				Environment and
				Energy Science

○: course from this major, ★: course given in English

To satisfy the Career Development Courses requirement, credits may be acquired from courses listed above as well as from those listed under Career Development Courses (see the Liberal Arts and Basic Science Courses Guide).

***GA:** Graduate Attribute

Table D3-2. Courses of the Graduate Major in Human Centered Science and Biomedical Engineering that can be recognized as Career Development Courses in the Productive Leader Program (PLP)

Course	Course	Cou	rse		Credits	GA*	Learning	Comments
category	number						goals	
	HCB.C631.A	0	*	HCB International Internship	0-0-4	P2D	B,C,D	
						P3D		
	HCB.C632.A	0		Research Working in Company	0-2-2	P2D	B,C,D	for Graduate
						P3D		Program for
								Working Adults
can be								students
recognized	HCB.C633.A	0	*	HCB off-Campus advanced training 1	0-0-1	P1D	B,C,D	
as Career						P2D		
Development						P3D		
Courses	HCB.C634.A	0	*	HCB off-Campus advanced training 2	0-0-2	P1D	B,C,D	
						P2D		
						P3D		
	LST C601		*	PhD Internship 1	0-1-0	P1D	A,C,E	Life Science and
						P2D		Technology]

				P3D		
LST.C602	*	PhD Internship 2	0-2-0	P1D	A,C,E	Life Science and
251.0002		The inventoring	020	P2D	11,0,2	Technology]
				P3D		Teemiology 1
LST.C603	*	PhD Internship 3	0-4-0	P1D	A,B,C,E	Life Science and
L51.C003		The internsing 5	0 4 0	P2D	, ri,b,c,b	Technology]
				P3D		reemiology 1
LST.C604	*	PhD Internship 4	0-6-0	P1D	A,B,C,E	Life Science and
251.0001		The internal p		P2D	11,5,0,2	Technology]
				P3D		reemotogy r
LST.C605		Career Development in Industry	0-0-4	P2D	A,B,C,E	Life Science and
251.000		Career Beveropment in mausury		P3D	11,5,0,5	Technology]
						for Graduate
						Program for
						Working Adults
						students
LST.C607	*	IGP Off-Campus Training I	0-1-0	P1D	A,C,E	Life Science and
		, , , , , , , , , , , , , , , , , , ,		P2D	, , ,	Technology]
				P3D		for IGP Students
LST.C608	*	IGP Off-Campus Training II	0-1-0	P1D	A,C,E	Life Science and
		, , , , , , , , , , , , , , , , , , ,		P2D	, , ,	Technology]
				P3D		for IGP Students
ACL.C601	*	International Internship on	0-0-4	P1D		[Education
		Computational Life Sciences for		P2D		Academy of
		Doctoral Students		P3D		Computational Life
						Sciences]
ACL.A601		Introduction to Business Plan for	1-0-0	P0D		[Education
		Doctoral Students				Academy of
						Computational Life
						Sciences]
ACE.D644		Career Planning	1-0-0	P0D		[Academy for
						Co-creative
						Education of
						Environment and
				<u> </u>		Energy Science
ACE.E651		Co-creative Education Off-Campus	0-0-4	P0D		[Academy for
		Project A (Overseas)		P1D		Co-creative
				P2D		Education of
						Environment and
						Energy Science
ACE.E652		Co-creative Education Off-Campus	0-0-4	P0D		[Academy for
		Project B (Overseas)		P1D		Co-creative
				P2D		Education of
						Environment and

				Energ	y Science]
ACE.E653	Co-creative Education Off-Campus	0-0-4	P0D	[Aca	demy for
	Project C (in Japan)		P1D	Co-cre	eative
			P2D	Educa	tion of
				Enviro	onment and
				Energ	y Science]
ACE.E654	Co-creative Education Off-Campus	0-0-4	P0D	[Aca	demy for
	Project D (in Japan)		P1D	Co-cre	eative
			P2D	Educa	tion of
				Enviro	onment and
				Energ	y Science]
ACE.E659	Policy Internship A	0-0-4	P0D	[Aca	ndemy for
			P1D	Co-cre	eative
			P2D	Educa	tion of
				Enviro	onment and
				Energ	y Science]
ACE.E660	Policy Internship B	0-0-4	P0D	[Aca	ndemy for
			P1D	Co-cre	eative
			P2D	Educa	tion of
				Enviro	onment and
				Energ	y Science]

○: course from this major, ★: course given in English

To satisfy the Career Development Courses requirement, credits may be acquired from courses listed above as well as from those listed under Career Development Courses (see the Liberal Arts and Basic Science Courses Guide).

*GA: Graduate Attribute

8. Research Related to the Completion of Doctoral Theses

In the Doctoral thesis research, in addition to problem-solving skills, we foster problem setting ability and improvement of communication skills in English. These are acquired in the process of setting and evaluating the results of the studies. An example of the flow of the Doctoral thesis is shown below.

· Interim presentation

It is important to conduct research systematically and check the progress to produce research results. Thus, student conduct "Interim presentation" (Research Planning for Doctoral Thesis I and II) of their thesis research in 4Q and 8Q.

• Judgement criterion of the final defense of Doctoral Thesis

The Doctoral thesis must be written in Japanese or English by the student. The content of the thesis must have novelty, creativity, and sufficient academic value in the field of Human Centered Science and Biomedical Engineering, and also major parts of the content must be published in international academic journals or the same level as the contents in international journals.

• Implementation manner of the final defense of Doctoral Thesis

After students pass the interim interview, they will submit their thesis and then perform the oral presentation. A final examination and evaluation will be carried out via a preliminary review by the advisors. In the final examination, their understanding abilities (including English ability) of the relevant research field will be confirmed. The oral presentation must be done in Japanese or English.