Graduate Major in Nuclear Engineering

[Master's Degree Program]

1. Outline

Growing attention has been placed on nuclear energy as an ultimate measure for reduction of fossil fuel consumption and CO₂ emission. Under the circumstances of global warming and the price hike of oil, gas and coal, a number of countries have been considering the implementation of nuclear power plants. The key factor of the nuclear energy development is the development of human resources. Our original course of international nuclear engineering has been established in 1993. Since then, a number of students have joined us from many countries and graduated from our course. They are actively contributing to the development of industries and technologies in Japan or in their own countries. This graduate course provides with core curriculum for nuclear reactor engineering and fuel cycle technologies and also covers extended nuclear energy, such as beam, accelerator, plasma sciences, nuclear fusion, energy and environment, and social relations.

2. Competencies Developed

The curriculum is structured to allow students to acquire advanced specialized knowledge of nuclear engineering, broad vision and education, and a strong sense of ethics and responsibility based on the systematic or comprehensive knowledge of science and engineering learned in the Undergraduate Program. It also enables students to acquire more advanced specialized knowledge, logical dialogue skills, writing skills, practical problem-solving ability, and creativity through Research Seminars and master's thesis research.

3. Learning Goals

The goals provided in the course to obtain the competencies described in the curriculum are as follows:

- · High specialized knowledge to understand the essence of problems in nuclear engineering
- · Mastery of skills to solve practical problems by the use of the high specialized knowledge

• Mastery of skills for solutions and creative research and development with high ethics and societal responsibilities by the use of the specialized knowledge and high degree of sophistication

· Mastery of skills to deploy discussions with academic presentations and scientific communications in English

4. IGP Completion Requirements

The following requirements must be met to complete the Master's Degree Program of this major.

- 1. A total of 30 credits or more acquired from 400- and 500-level courses.
- 2. From the courses specified in the Graduate Major in Nuclear Engineering curriculum,
 - 8 credits acquired from Research Seminars;
 - a minimum of 21 credits acquired from courses of Research Seminars, Research-Related Courses, and Major Courses
 - 8 credits acquired from required Major Courses
 - 5 credits acquired from restricted selective Major Courses
 - a minimum of 5 credits acquired from Liberal Arts and Basic Science Courses
 - (3 credits from the Humanities and Social Science Courses of which 2 credits must be from400-level courses and 1 credit from 500-level courses, and 2 credits from Career DevelopmentCourses).
- 3. Pass the master's thesis review and defense.

Course cate	gory	<required courses=""></required>	<electives></electives>	Minimum	Associated learning	Comme
		Required credits	Minimum	credits	goals	nts
		•	credits	required		
			required			
			•2 credits			
			from			
	Humanities and		400-level			
	social science		•1 credit		В	
Liberal arts	courses		from			
and basic			500-level	5 credits		
science			500-10/01			
courses	Career				С	
	development		2 credits			
	courses					
	Other courses				В	
		Seminar in Nuclear Engineering S1			B,D,E,F	
		Seminar in Nuclear Engineering F1				
		Seminar in Nuclear Engineering S2				
	Research seminars	Seminar in Nuclear Engineering F2				
		A total of 8 credits, 2 credits each				
		from the above courses.				
				21 credits		
	Research-related				В	
	courses					
		8 credits	A total of 5		Α, Β	
Core courses			credits			
	NC 1		from			
	Major courses		Restricted			
			electives			
			Group A			
	Major courses and				В	
	Research-related					
	Courses <u>outside</u>					
	the Graduate					
	Major in Nuclear					
	Engineering					
	standard					
	curriculum					
Total required	credits	A minimum of 30 credits in additi	on to meeting th	e above condit	ions	
zotai requireu	ci cuito	is minimum of 50 creates in additi	on to meeting th		10113	

Table M1. Graduate Major in Nuclear Engineering Completion Requirements

Note	• Japanese Language and Culture Courses offered to International Students can be recognized as
	Humanities and Social Science Courses of the corresponding course level.
	• As for Liberal Arts and Basic Science Courses, please refer to the relevant pages.

5. IGP Courses

Table M2. Core Courses of the Graduate Major in Nuclear Engineering

C		Course	Co	urse		Credits	Comp	Learning	Comments
	ourse	number					etencie	goals	
cat	tegory						s		
		NCL.Z491.R	\bigcirc	*	Seminar in Nuclear Engineering S1	0-2-0	1,2,3,4,	A,B,D,F	
Rese	400						5		
Research seminars	level	NCL.Z492.R	0	*	Seminar in Nuclear Engineering F1	0-2-0	1,2,3,4,	A,D,F	
semi							5		
inars		NCL.Z591.R	\odot	★	Seminar in Nuclear Engineering S2	0-2-0	1,2,3,4,	A,D,F	
	500						5		
	level	NCL.Z592.R	0	×	Seminar in Nuclear Engineering F2	0-2-0	1,2,3,4,	A,D,F	
							5		
		NCL.I501.L			Internship in Nuclear Engineering I	0-0-1	2,4,5	В	
		NCL.I502.L			Internship in Nuclear Engineering II	0-0-2	2,4,5	В	
		NCL.1503.L			Internship in Nuclear Reactor	0-0-1	2,4,5	В	
Rese					Decommissioning I				
arch		NCL.I504.L			Internship in Nuclear Reactor	0-0-2	2,4,5	В	
ı-rel:	500				Decommissioning II				
Research-related courses	level	NCL.I505.L		*	International Internship in Nuclear	0-0-2	1,2,3,4,	В	
ours					Engineering I		5		
es		NCL.I506.L		*	International Internship in Nuclear	0-0-2	1,2,3,4,	В	
					Engineering II		5		
		NCL.I507.L		*	International Internship in Nuclear	0-0-2	1,2,3,4,	В	
					Engineering III		5		
		NCL.I508.L		*	International Internship in Nuclear	0-0-2	1,2,3,4,	В	
					Engineering IV		5		
		NCL.A401.L		*	Laser and Particle - Beam Technology and Its Medical Applications	2-0-0	3	А	
Major	400	NCL.A402.L		*	Nuclear Fusion Reactor Engineering	2-0-0	3	А	
Major courses	level	NCL.B401.L		*	Radiation Biology and Medicine	2-0-0	3	А	For ACEEES
		NCL.C401.R	0	*	Nuclear Fuel Cycle Engineering	2-0-0	3	А	For ACEEES

NCL.C402.L		*	Radioactive Waste Management and Disposal Engineering	1-0-0	3	А	
NCL.C403.L		*		1-0-0	3	A	
NCL.D401.A	0	*	Experiments for Materials related to Decommissioning A	0-0-1	3,5	A	Either NCL.D401.A or NCL.D402.A car be earned.
NCL.D402.A	0	*	Experiments for Materials related to Decommissioning B	0-0-1	3,5	A	Either NCL.D401.A or NCL.D402.A car be earned.
NCL.D403.A	0	*	Experiment on Severe Accident Engineering	1-0-1	3,5	А	
NCL.D404.L			Nuclear Reactor Decommissioning	1-0-0	3	А	
NCL.D405.A	0	*	Experiments for Nuclear Fuel Debris and Back - end Fuel Cycle A	0-0-1	3	A	Either NCL.D405.A or NCL.D406.A car be earned.
NCL.D406.A	0	*	Experiments for Nuclear Fuel Debris and Back - end Fuel Cycle B	0-0-1	3	A	Either NCL.D405.A or NCL.D406.A car be earned.
NCL.F401.L			Ethics for Nuclear System Development	1-0-0	2,3,4,5	В	
NCL.F402.L			Acts and Regulations on Atomic Energy	1-0-0	3,5	В	
NCL.N401.L		*	Basic Nuclear Physics	2-0-0	3,5	А	For ACEEES
NCL.N402.R	0	*	Neutron Transport Theory	1-1-0	3,5	А	For ACEEES
NCL.N403.L		*	Nuclear Materials and Structures	2-0-0	3	А	For ACEEES
NCL.N404.A	0	*	Thermal - Hydraulics and Radiation - Measurement Laboratory	0-0-1	3,5	А	
NCL.N405.L		*		2-0-0	3	А	For ACEEES
NCL.N406.R	0	*	Nuclear Reactor Theory	1-1-0	3,5	А	For ACEEES
NCL.N407.R	0	*	Nuclear Safety Engineering	2-0-0	3	А	For ACEEES
NCL.N408.A	0]	Nuclear Reactor Physics Laboratory	0-0-2	2,3,5	А	

Γ	NCL.N409.L		Nuclear Energy Systems	2-0-0	3	А	
	INCL.IN409.L	*	Nuclear Energy Systems	2-0-0	3	A	
	NCL.F451.L		Nuclear Engineering Science I	2-0-0	3	А	
	NCL.F452.L		Nuclear Engineering Science II	2-0-0	3,5	А	
	NCL.F453.L		Low Carbon Sociology	2-0-0	2,4,5	В	
	NCL.F454.L		Safety and Regional Symbiosis for Nuclear Energy	2-0-0	2,4,5	В	
	NCL.M401.L		Medical Accelerators and Reactors	1-0-0	3	А	
	NCL.U401.L	*	Measurement of Environmental Radiation	1-0-1	2,4,5	А	Only for U-ATOM studen
	NCL.U402.L	*	Simulation of Severe Nuclear Accidents	1-1-0	3,5	A	Only for U-ATOM student
	NCL.U403.L	*	Environmental Dynamics of Radioactive Nuclides	1-1-0	3,5	А	Only for U-ATOM student
	NCL.F403.L	*		2-0-0	3	В	
	NCL.D501.L		Special Lecture on Reactor Decommissioning	1-0-0	3	A,B	
	NCL.O501.L		Special Lecture on Nuclear Engineering I	1-0-0	1,3	A,B	
	NCL.0502.L	*	Special Lecture on Nuclear Engineering II	1-0-0	1,3	A,B	
	NCL.O503.L	*	Special Lecture on Nuclear Engineering	1-0-0	1,3	A,B	
	NCL.0504.L	*	Special Lecture on Nuclear Engineering IV	1-0-0	1,3	A,B	
500	NCL.0505.L	*	Special Lecture on Nuclear Engineering V	1-0-0	1,3	A,B	
level	NCL.0506.L	*	Special Lecture on Nuclear Engineering VI	1-0-0	1,3	A,B	
	NCL.0507.L	*	Special Lecture on Nuclear Engineering VII	1-0-0	1,3	A,B	
	NCL.0508.L	*	Special Lecture on Nuclear Engineering VIII	1-0-0	1,3	A,B	
	NCL.U501.L	*	Nuclear Dojo 1	1-0-0	1,2,4	А	Only for U-ATOM student
	NCL.U502.L	*	Nuclear Dojo 2	1-0-0	3,4	А	Only for U-ATOM student
	NCL.U503.L	*	Nuclear Dojo 3	1-0-0	1,3,4,5	А	Only for U-ATOM student

_	 				-		
	NCL.U504.L	•	Nuclear Engineering Volunteer Activities	0-0-1	2,4,5	В	Only for
			Ι				U-ATOM students
	NCL.U505.L	•	Nuclear Engineering Volunteer Activities	0-0-1	2,4,5	В	Only for
			П				U-ATOM students
	NCL.U506.L	*	English in a Global World	1-0-0	1,2,5	В	Priority in
		•					U-ATOM students
	NCL.U507.L	*	International Relations of Nuclear	1-0-0	1,2,4,5	В	Priority in
		•	Technology				U-ATOM students
	NCL.U508.L	*	International Political Economy and	1-0-0	1,2,4,5	В	Priority in
		•	Energy Strategy				U-ATOM students
	NCL.U509.L	*	French Language and Culture	1-0-0	1,2	В	Priority in
		•					U-ATOM students
	NCL.U510.L	*	Basic International Law and Diplomacy	1-0-0	1,4	В	Priority in
		•					U-ATOM students
	NCL.U511.L	*	History of Research, Development and	1-0-0	1,3	В	Priority in
		•	Utilization of Nuclear Energy				U-ATOM students

Note :

• ◎ : Required course, ○ : Restricted elective, ★: Classes in English, O : odd academic years, E : even academic years

• 🗆 : Course is recognized as an Academy for Co-creative Education of Environment and Energy Science, Leading Graduate School (ACEEES) course.

• • : Course is recognized as an Academy for Global Nuclear Safety and Security Agent, Leading Graduate School (U-ATOM) course.

• Competencies: 1 = Intercultural skills; 2 = Communication skills; 3 = Specialist skills; 4 = Critical thinking skills;

5 = Practical and/or problem-solving skills

• [] Course offered under another graduate major.

• The character preceding the three digits in the course number denotes the course's subdiscipline (i.e., "D" represents the subdiscipline code in the course number ABC.D400.R): A (Nuclear fusion and accelerator engineering), B (Radiation biology and medicine), C (Nuclear fuel cycle engineering), D (Nuclear reactor decommissioning engineering), F (Basic nuclear engineering), I (Internships), M (Medical engineering), N (Nuclear reactor engineering), O (Wide and advanced nuclear engineering), U (Leading Graduate School (U-ATOM) subjects), Z (Research seminars).

6. IGP Courses That Can be Recognized as Humanities and Social Science Courses

None

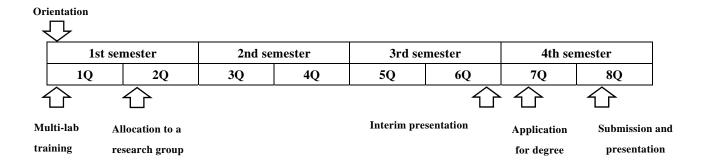
7. IGP Courses That Can be Recognized as Career Development Courses

As a general rule, students who would like their Career Development Courses to contribute to completion requirements of their master's degree program need to satisfy all of the specified Graduate Attributes ("GA"), including the attainment of at least two course credits, listed in Table MA-1 of the "Guide to Graduate Education and International Graduate Program (Liberal Arts and Basic Science Courses) - Career Development Courses". The status of the GA will be evaluated at the time of degree completion.

In addition to Career Development Courses, there are Major Courses that can also be recognized as such — shown below in Table M3 — which may go toward fulfilling the GA requirements.

However, note that when the corresponding Major Courses are recognized and accredited as Career Development Courses, their credits cannot be counted a second time (as Major Courses) towards degree completion requirements.

Course	Course	Cours	e	Credits	GA*	Learning	Comments
category	number					goals	
can be	NCL.F401.L		Ethics for Nuclear System Development	1-0-0	C0M,	С	
recognized					C1M		
as Career							
Developmen	NCL.F402.L		Acts and Regulations on Atomic Energy	1-0-0	C1M	С	
t Courses							


Table M3. Courses of the Graduate Major in Nuclear Engineering that can be recognized as Career Development Courses

To satisfy the Career Development requirement, credits may be acquired from courses listed above as well as from those listed under Career Development Courses (see the Liberal Arts and Basic Science Courses Guide).

*****GA: Graduate Attribute

8. Research Related to the Completion of Master Theses

In the research related to the completion of master thesis, the students experience a series of research processes, and acquire abilities to identify, to investigate, and to solve new issues. The procedure is as follows:

interim presentation

On the 6^{th} quarter, an interim presentation is examined to clarify background and objective of the research in terms of career formation.

· criterion for judgment

Master thesis must be the original including new scientific knowledge in the nuclear engineering or valuable knowledge contributed to the progress of the nuclear engineering.

· judgement procedure of master thesis

The referee board consists of more than 3 referees. After the pre-review by the referees, the thesis is finally evaluated though the oral presentation. A student wishing to go on to the doctor course is examined by 5 referees.

[Doctoral Degree Program]

1. Outline

Growing attention has been placed on nuclear energy as an ultimate measure for reduction of fossil fuel consumption and CO2 emission. Under the circumstances of global warming and the price hike of oil, gas and coal, a number of countries have been considering the implementation of nuclear power plants. The key factor of the nuclear energy development is the development of human resources. Our original course of international nuclear engineering has been established in 1993. Since then, a number of students have joined us from many countries and graduated from our course. They are actively contributing to the development of industries and technologies in Japan or in their own countries. This graduate course provides with core curriculum for nuclear reactor engineering and fuel cycle technologies and also covers extended nuclear energy, such as beam, accelerator, plasma sciences, nuclear fusion, energy and environment, and social relations.

2. Competencies Developed

The curriculum is designed to allow students to polish what they have learned in the Master's Program, including advanced specialized knowledge of nuclear engineering, broad vision and education, a sense of ethics and social responsibility, logical dialogue skills, writing skills, practical problem-solving skills, and creativity. Furthermore, it enables students to acquire the abilities to discover problems and research them, to create new knowledge, to disseminate, to pioneer and lead new fields, and to develop leadership with which they can play an active role in international society.

3. Learning Goals

The goals provided in the course to obtain the competencies described in the curriculum are as follows:

- · Competence as a global leader in the nuclear engineering fields
- Abilities to create and to disseminate new knowledge by the use of the advanced specialized knowledge of nuclear
 engineering
- · Abilities to identify, to investigate, and to solve new issues under the deep understanding of the nuclear engineering
- · Ability to conduct innovative research and development in an ethical manner and societal responsibilities

4. IGP Completion Requirements

The following requirements must be met to complete the Doctoral Degree Program of this major.

- 1. A total of 24 credits or more acquired from 600-level courses.
- 2. From the courses specified in the Graduate Major in Nuclear Engineering curriculum,
 - a minimum of 18 credits acquired from courses of Research Seminars, Research-Related Courses, and Major Courses
 - 12 credits acquired from Research Seminars (If the student completes the doctor study in less

than 12 quarters, the required credit is reduced according to the number of spent quarters.)

- a minimum of 6 credits acquired from Major Courses; and
- a minimum of 6 credits acquired from Liberal Arts and Basic Science Courses
 - (2 credits from Humanities and Social Science Courses, and 4 credits from Career Development Courses).
- 3. Give the oral presentation in English in the interim presentation meeting.
- 4. Pass the doctoral thesis review and defense.
- 5. Achieve the score of 730 or more in TOEIC standard in an external official English language test.

Course cate	gory	<required courses=""> Required credits</required>	<electives> Minimum credits required</electives>	Minimum credits required	Associated learning goals	Comme nts
Liberal arts	Humanities and social science courses		2 credits		С	
and basic science courses	Career development courses		4 credits	6 credits	с	
	Other courses					
Core courses	Research seminars	Seminar in Nuclear Engineering S3 Seminar in Nuclear Engineering F3 Seminar in Nuclear Engineering S4 Seminar in Nuclear Engineering F4 Seminar in Nuclear Engineering S5 Seminar in Nuclear Engineering F5 A total of 12 credits, 2 credits each from the above courses.		18 credits	Α, Β	
	Research-related				В	
	courses Major courses		6 credits		A, B	
	Major courses and Research-related courses <u>outside</u> the Graduate Major in					

Table D1. Graduate Major in Nuclear Engineering Completion Requirements

	Nuclear Engineering standard curriculum								
Total required	l credits	A minimum of 24 credits in addition to meeting the above conditions							
Note		 Japanese Language and Culture Courses offered to International Students can be recognized as Humanities and Social Science Courses of the corresponding course level. As for Liberal Arts and Basic Science Courses, please refer to the relevant pages. 							

5. IGP Courses

Table D2. Core Courses of the Graduate Major in Nuclear Engineering

		Course	Co	ourse	2	Credits	Comp	Learning	Comments
	ourse	number					etencie	goals	
ca	tegory						s		
	600	NCL.Z691.R	$^{\odot}$	*	Seminar in Nuclear Engineering S3	0-2-0	1,2,3,4,	A, D, F	
	level						5		
_		NCL.Z692.R	0	*	Seminar in Nuclear Engineering F3	0-2-0	1,2,3,4,	A, D, F	
lesea							5		
ırch		NCL.Z693.R	\odot	*	Seminar in Nuclear Engineering S4	0-2-0	1,2,3,4,	A, D, F	
Research seminars							5		
nars		NCL.Z694.R	0	*	Seminar in Nuclear Engineering F4	0-2-0	1,2,3,4,	A, D, F	
							5		
		NCL.Z695.R	0	*	Seminar in Nuclear Engineering S5	0-2-0	1,2,3,4,	A, D, F	
							5		
		NCL.Z696.R	0	*	Seminar in Nuclear Engineering F5	0-2-0	1,2,3,4,	A, D, F	
							5		
Res	600	NCL.I601.L		*	Nuclear Engineering Off-Campus Project	0-0-4	1,2,3,4,	В	
earc d cor	level						5		
Research-relate d courses									
ate									
	600	NCL.A601.L		*	Special Lecture on Accelerator and	1-0-0	3	А	
	level				Fusion Reactor Technology I				
		NCL.A602.L		¥	Special Lecture on Accelerator and	1-0-0	3	А	
					Fusion Reactor Technology II				
Majo		NCL.A603.L		*	Special Lecture on Accelerator and	1-0-0	3	А	
or co					Fusion Reactor Technology III				
Major courses		NCL.C601.L		*	Special Lecture on Nuclear Fuel Cycle I	1-0-0	3	А	
		NCL.C602.L		*	Special Lecture on Nuclear Fuel Cycle II	1-0-0	3	А	
		NCL.C603.L		★	Special Lecture on Nuclear Fuel Cycle III	1-0-0	3	А	
		NCL.C604.L		*	Nuclear Fuel Cycle Engineering Special	0-0-2	3	А	

		Laboratory				
NCL.N601.L	,	Special Lecture on Nuclear Reactor Technology I	1-0-0	3	A	
NCL.N602.L	,	Special Lecture on Nuclear Reactor Technology II	1-0-0	3	А	
NCL.N603.L	*	Special Lecture on Nuclear Reactor Technology III	1-0-0	3	А	
NCL.N604.L	,	Thermal - Hydraulics and Radiation - Measurement Special Laboratory	0-0-2	3,5	A,D	
NCL.N605.L	, ,	Nuclear Reactor Physics Special Laboratory	0-0-2	3,5	A,D	
NCL.N606.L	,	Nuclear Material Special Laboratory	0-0-2	3	A,D	
NCL.N607.L	,	Severe Accident Special Laboratory	0-0-2	3,5	A,D	
NCL.U601.L	,	Nuclear Dojo 4	1-0-0	3,4	A	Only for U-ATOM students
NCL.U602.L	,	Nuclear Dojo 5	1-0-0	3,4	А	Only for U-ATOM students
NCL.U603.L	,	Nuclear Dojo 6	1-0-0	1,2,3,4, 5	А	Only for U-ATOM students
NCL.U604.L	,	Nuclear Security Training	1-1-0	3,5	А	Only for U-ATOM students
NCL.U605.L	,	Risk Communication I	1-0-0	2,5	В	Priority in U-ATOM students
NCL.U606.L	,	Risk Communication II	1-0-0	2,5	В	Priority in U-ATOM students
NCL.U607.L	,	Basics of Philosophy	1-0-0	1,2,5	В	Priority in U-ATOM students
NCL.U608.L	,	Basics of Culture and Civilization	1-0-0	1	В	Priority in U-ATOM

	NCL.U610.L	*	Global Nuclear Internship in Japan	0-2-0	2,3,4,5	В	Only for
		•					U-ATOM
							students
	NCL.U611.L	*	Global Nuclear Internship in Foreign	0-2-0	2,3,4	В	Only for
		•	Countries 1				U-ATOM
							students
	NCL.U612.L	★	Global Nuclear Internship in Foreign	0-2-0	2,3,4	В	Only for
		•	Countries 2				U-ATOM
							students
	NCL.U613.L	★	Arts and Human	1-0-0	1	В	Priority in
		•					U-ATOM
							students

Note :

• 💿 : Required course, 🔾 : Restricted elective, ★: Classes in English, O : odd academic years, E : even academic years

• 🗆 : Course is recognized as an Academy for Co-creative Education of Environment and Energy Science, Leading Graduate School (ACEEES) course.

• • : Course is recognized as an Academy for Global Nuclear Safety and Security Agent, Leading Graduate School (U-ATOM) course.

• Competencies: 1 = Intercultural skills; 2 = Communication skills; 3 = Specialist skills; 4 = Critical thinking skills;

5 = Practical and/or problem-solving skills

• [] Course offered under another graduate major.

• The character preceding the three digits in the course number denotes the course's subdiscipline (i.e., "D" represents the subdiscipline code in the course number ABC.D400.R): A (Nuclear fusion and accelerator engineering), C (Nuclear fuel cycle engineering), I (Internships), N (Nuclear reactor engineering), U (Leading Graduate School (U-ATOM) subjects), Z (Research seminars).

6. IGP Courses That Can be Recognized as Humanities and Social Science Courses

None

7. IGP Courses That Can be Recognized as Career Development Courses

None

8. Research Related to the Completion of Doctoral Theses

In the research related to the completion of doctoral thesis, the students acquire abilities to solve and to discover problems through the learning design and process. English communication skill equal to or higher than TOEIC 730 is also required.

		Interim presentation											
	1 st ser	1 st semester		2nd semester		3rd semester		4th semester		5th semester		6th semester	
	1Q	2Q	3Q	4Q	5Q	6Q	7Q	8Q	9Q	10Q	11Q	12Q	
公 公公(公		

Orientation

Application for degree Submission and Final examination

presentation

interim presentation

On the 8th^h quarter, an interim presentation is examined to clarify target and completion for the research.

· criterion for judgment

Doctoral thesis must be the original including creative and new scientific knowledge in the nuclear engineering, and its main part must be published or have equivalent level in the international scientific journals.

· judgement procedure of doctoral thesis

The referee board consists of more than 5 referees. After the oral presentation and the pre-review by the referees, the thesis is finally evaluated. Scholastic ability is also examined in the finale examination.