Education Program of Advanced Information Technology Leaders

[Master's degree program]

1. International Graduate Program (A) Outline

Japan is a world leader in both research and practical application in many areas of information science and technology. This program offers overseas students enrollment in master's and doctoral programs that educate them to be a leader of research and development in information science and technology. To this end, the program includes practice-oriented courses in addition to the classroom lectures. Students study using advanced computing environments, and are able to participate in industrial internships.

1-1. Graduate Major(s) Available to IGP (A) Students

This program is offered to the student majoring in the following four graduate majors:

- Graduate Major in Mathematical and Computing Science
- Graduate Major in Computer Science
- · Graduate Major in Artificial Intelligence
- · Graduate Major in Systems and Control Engineering

2. Competencies Developed

Students will acquire advanced knowledge of information science and technology including practical applications, and communication skills.

3. Learning Goals

Refer to the relevant Graduate Major pages in "Guide to Graduate Majors (for IGP)" for the learning goals. The categories of learning goals shown in Table M1-1~M1-7 are defined in the relevant Graduate Major pages in "Guide to Graduate Majors (for IGP)".

4. IGP (A) Completion Requirements and Courses

[1.] IGP (A) Completion Requirements

The following requirements must be met to complete this program.

- 1. The credits that students take for fulfilling the IGP (A) completion requirements must cover at least three subject areas out of the eight subject areas defined below. Refer to Table M1-1~M1-7 for the subject area of each course.
- 2. The students of Graduate major in Mathematical and Computing Science, Computer Science and Artificial Intelligence must take the credit of International Project for System Development. The students of Graduate major in Systems and Control Engineering must take the credit of Systems and Control Engineering Project. These credits can be used for fulfilling the completion requirements of their departments (degree completion requirements) as well.

Subject Area

- 1. Mathematical and Computing Sciences
- 2. Computer System
- 3. Software
- 4. Artificial Intelligence
- 5. Cognitive Engineering
- 6. Systems and Control
- 7. Measuring/Monitoring/Modeling
- 8. Socio-Environmental Informatics

Under this program, in addition to the above-mentioned requirements, students must also fulfill the Graduate Major completion requirements of their departments (degree completion requirements). For completion requirements of your Graduate Major, please refer to the relevant Graduate Major pages in "Guide to Graduate Majors (for IGP)".

[2.] IGP (A) Courses

Table M1-1. Core Courses of the Graduate Major in Mathematical and Computing Science (Master's Level)

-	ourse tegory	Subject area	Course number		Course title	Credits
		1	MCS.T401	0	Analysis on Continuous Systems	2-0-0
		1	MCS.T402		Mathematical Optimization: Theory and Algorithms	2-0-0
		1	MCS.T405	0	Theory of Algorithms	2-0-0
	400	1	MCS.T407	0	High Performance Computing	2-0-0
м	level	1	MCS.T408	Е	Discrete, Algebraic and Geometric Structures I	2-0-0
Major		1	MCS.T409	0	Applied Functional Analysis	2-0-0
cou		1	MCS.T410	Е	Applied Probability	2-0-0
courses		1	MCS.T411		Computational Complexity Theory	2-0-0
		1	MCS.T501	0	Practical Parallel Computing	2-0-0
		1	MCS.T502		Functional Programming	2-0-0
	500 level	1	MCS.T503	0	Programming Language Design	2-0-0
	icver	1	MCS.T504	Е	Topics in Geometry	2-0-0
		1	MCS.T509	0	Software Verification	2-0-0
		Note : • O : odd a	cademic years, E : ev	en acade	mic years	

	ourse tegory	Subject area	Course number		Course title	Credits		
		2	CSC.T406	Е	Distributed Systems	2-0-0		
		3	CSC.T425		Concurrent System Theory	2-0-0		
		5	CSC.T421		Human Computer Interaction	2-0-0		
Major	400 level	3	CSC.T404	Е	Logical Foundations of Computing	2-0-0		
orc		3	CSC.T426	0	Software Design Methodology	2-0-0		
courses		3	CSC.T431		Advanced System Software	2-0-0		
es		2	CSC.T438		Distributed Algorithms	2-0-0		
		-	CSC.T434		International Project for System Development	0-0-2		
	500 level	2	CSC.T523		Advanced Data Engineering	2-0-0		
		Note : • O : odd academic years, E : even academic years						

 Table M1-2. Core Courses of the Graduate Major in Computer Science (Master's Level)

 Table M1-3. Core Courses of the Graduate Major in Artificial Intelligence (Master's Level)

	ourse tegory	Subject area	Course number		Course title	
2	400 level	4	ART.T458		Machine Learning	2-0-0
Major courses		5	ART.T460		Speech Information Processing	2-0-0
es	ievei	4	ART.T462	0	Complex Networks	2-0-0
Note : • O : odd academic years, E : even academic years						

Table M1-4. Core Courses	of the Graduate Major	in Systems and Control	l Engineering (Master's Level)
	of the Oracuate Major	in Systems and Control	i Engineering (master s Lever)

Course category		Subject area	Course number	Course title	Credits			
		6	SCE.A404	Nonlinear Dynamics	1-0-0			
	400	7	SCE.I401	Advanced course of Measurement and Signal Processing	1-0-0			
N	level	7	SCE.M402	Modeling of Bio-Systems I	1-0-0			
Major		6	SCE.Z401	Systems and Control Engineering Project	0-3-0			
		6	SCE.A501	Theory of Complex Networks	1-0-0			
courses		7	SCE.A504	Advanced course of Computational Mechanics	1-0-0			
s	500 level	7	SCE.A505	Inverse Problems and Data Assimilation	1-0-0			
	iever	6	SCE.C502	Hybrid Systems Control	1-0-0			
		6	SCE.C531	Nonlinear and Adaptive Control	1-0-0			
		Note : • O : odd academic years, E : even academic years						

Course category		Subject area	Course number		Course title	Credits		
Coui	400	5	HCB.M463	0	Introduction to Biomedical Instrumentation	1-0-0		
ıjor rses	level	7	HCB.M464	Е	Introduction to Neural Engineering	1-0-0		
	Note : • O : odd academic years, E : even academic years							

 Table M1-5. Core Courses of the Graduate Major in Human Centered Science and Biomedical Engineering (Master's Level)

Table M1-6. Core Courses of the Graduate Major in Civil Engineering (Master's Level)

	Course Subject category area			Course title			
Major courses	400 level	8	CVE.A403		Analysis of Vibrations and Elastic Waves	2-0-0	
	Note : • O : odd academic years, E : even academic years						

Table M1-7. Advanced Topics in Computing (Master's Level)

	ourse tegory	Subject area	Course number	Course title	Credits
	400	TBA	XCO.T496	Advanced Topics in Computing AE	2-0-0
Major courses		TBA	XCO.T497	Advanced Topics in Computing AO	2-0-0
Major courses	level	TBA	XCO.T498	Advanced Topics in Computing BE	2-0-0
		TBA	XCO.T499	Advanced Topics in Computing BO	2-0-0
		Note :			
• The subject area is subject to the lecturer.					
		• O : odd	academic years, E : ev	en academic years	

Under this program, in addition to the above-mentioned requirements, students must also fulfill the Graduate Major completion requirements of their departments (degree completion requirements). For core courses of your Graduate Major, please refer to the relevant Graduate Major pages in "Guide to Graduate Majors (for IGP)".

[Doctoral degree program]

1. IGP (A) Outline

Japan is a world leader in both research and practical application in many areas of information science and technology. This program offers overseas students enrollment in master's and doctoral programs that educate them to be a leader of research and development in information science and technology. To this end, the program includes practice-oriented courses in addition to the classroom lectures. Students study using advanced computing environments, and are able to participate in industrial internships.

1-1. Graduate Major(s) Available to IGP (A) Students

This program is offered to the student majoring in the following four graduate majors:

- · Graduate Major in Mathematical and Computing Science
- Graduate Major in Computer Science
- Graduate Major in Artificial Intelligence
- · Graduate Major in Systems and Control Engineering

2. Competencies Developed

Students will acquire advanced knowledge of information science and technology including practical applications, and communication skills.

3. Learning Goals

Refer to the relevant Graduate Major pages in "Guide to Graduate Majors (for IGP)" for the learning goals.

4. IGP (A) Completion Requirements and Courses

[1.] IGP (A) Completion Requirements

The following requirements must be met to complete this program. Refer to Table D1-1~D1-5 for the subjects.

- 1. The students of Graduate major in Mathematical and Computing Science must take two credits from Forum on Mathematical and Computing Science S3, F3, S4, F4, S5, F5.
- 2. The students of Graduate major in Computer Science must take two credits from Forum on Computer Science S3, F3, S4, F4, S5, F5.
- 3. The students of Graduate major in Artificial Intelligence must take two credits from Forum on Artificial Intelligence S3, F3, S4, F4, S5, F5.
- 4. The students of Graduate major in Systems and Control Engineering must take two credits from Research Process A1, A2, A3, B1, B2, B3, B4, B5, B6.
- 5. These credits can be used for fulfilling the completion requirements of their departments (degree completion requirements) as well.

Under this program, in addition to the above-mentioned requirements, students must also fulfill the Graduate Major completion requirements of their departments (degree completion requirements). For completion requirements of your Graduate Major, please refer to the relevant Graduate Major pages in "Guide to Graduate Majors (for IGP)"s.

[2.] IGP (A) Courses

_	ourse tegory	Course number	Course title	Credits
		MCS.U681	Forum on Mathematical and Computing Science S3	0-0-1
M		MCS.U682	Forum on Mathematical and Computing Science F3	0-0-1
Major	600	MCS.U683	Forum on Mathematical and Computing Science S4	0-0-1
cour	level	MCS.U684	Forum on Mathematical and Computing Science F4	0-0-1
irses		MCS.U685	Forum on Mathematical and Computing Science S5	0-0-1
		MCS.U686	Forum on Mathematical and Computing Science F5	0-0-1
		Note :		
		• O : odd academic ye	ars, E : even academic years	

Table D1-1. Core Courses of the Graduate Major in Mathematical and Computing Science (Doctoral Level)

Table D1-2. Core Courses of the Graduate Major in Computer Science (Doctoral Level)

	ourse tegory	Course number	Course title	Credits	
		CSC.U681	Forum on Computer Science S3	0-0-1	
Major		CSC.U682	Forum on Computer Science F3	0-0-1	
	600	CSC.U683	Forum on Computer Science S4	0-0-1	
courses	level	CSC.U684	Forum on Computer Science F4	0-0-1	
ses		CSC.U685	Forum on Computer Science S5	0-0-1	
		CSC.U686	Forum on Computer Science F5	0-0-1	
Note :					
		• O : odd academic ye	ars, E : even academic years		

-	ourse tegory	Course number	Course title		Credits	
		ART.U681		Forum on Artificial Intelligence S3	0-0-1	
Major	600 level	ART.U682		Forum on Artificial Intelligence F3	0-0-1	
		ART.U683		Forum on Artificial Intelligence S4	0-0-1	
courses		ART.U684		Forum on Artificial Intelligence F4	0-0-1	
ses		ART.U685		Forum on Artificial Intelligence S5	0-0-1	
		ART.U686		Forum on Artificial Intelligence F5	0-0-1	
		Note :				
• O : odd academic years, E : even academic years						

Table D1-3. Core Courses of the Graduate Major in Artificial Intelligence (Doctoral Level)

Table D1-4. Core Courses of the Graduate Major in Systems and Control Engineering (Doctoral Level)

_	ourse tegory	Course number	Course title	Credits				
		SCE.Z681	Research Process A1	0-2-0				
		SCE.Z682	Research Process A2	0-2-0				
N		SCE.Z683	Research Process A3	0-2-0				
Major	600 level	SCE.Z684	Research Process B1	0-1-0				
r coi		SCE.Z685	Research Process B2	0-1-0				
courses		SCE.Z686	Research Process B3	0-1-0				
.		SCE.Z687	Research Process B4	0-1-0				
		SCE.Z688	Research Process B5	0-1-0				
		SCE.Z689	Research Process B6	0-1-0				
		Note : • O : odd academic years, E : even academic years						

Table D1-5. Advanced Topics in Computing (Doctoral Level)

Course category		Course number	Course title		Credits
cou	600 level	XCO.T673		Advanced Topics in Computing C	2-0-0
Major courses		XCO.T674		Advanced Topics in Computing D	2-0-0
Note : • O : odd academic years, E : even academic years					

Under this program, in addition to the above-mentioned requirements, students must also fulfill the Graduate Major completion requirements of their departments (degree completion requirements). For core courses of your Graduate Major, please refer to the relevant Graduate Major pages in "Guide to Graduate Majors (for IGP)".