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Global Scientific Information and Computing center (GSIC) 

at Tokyo Institute of Technology is operating the TSUBAME 

supercomputer series as “Everybody’s supercomputer”, 

which focus on high performance and easy-to-use. 

Since TSUBAME1.0 introduced in 2006, TSUBAME has 

been harnessed by around 2,000 users from Tokyo Tech, 

other research institutes, and industrial area. After partial 

adoption of GPU accelerators in TSUBAME1.2, GPUs are fully 

equipped in TSUBAME2.0 introduced in 2010. Owing to 

higher energy efficiency largely, TSUBAME2.0 achieved 30 

times higher speed performance than TSUBAME1.0 within 

a similar power budget[1]. TSUBAME2.0 has ranked as No.4 

in the Top500 supercomputer ranking and awarded “the 

Greenest Production Supercomputer in the World”. From 

the peta-scale application aspect, 2PFlops performance has 

been observed in dendritic solidification simulation, which 

resulted in winning the ACM Gordon Bell Prize[2]. In 2013, all 

the GPUs in TSUBAME2.0 have been replaced to K20X GPUs, 

and the resultant system is called TSUBAME2.5, whose peak 

performance is 5.6PFlops (double precision).

	 GSIC has started the operation of the brand-new 

system in this series, called TSUBAME3.0, in August 2017. The 

proposition submitted by SGI Japan has been adopted in 

January; since then, GSIC, SGI Japan and related vendors have 

cooperatively promoted preparations towards the operation 

start. Figure 1 is an illustration of the entire TSUBAME3.0 

system.

	 The target applications area of TSUBAME3.0 is not 

limited to typical HPC area, but includes big-data and artificial 

intelligence (AI) area. The main components of the system are 

540 compute nodes, which are customized version of SGI ICE 

XA. The total numbers of CPUs and GPUs are 1,080 and 2,160, 

respectively, and the total

performance is 12.15PFlops in double precision and 

47.2PFlops in half precision (or more). Half precision is an 

expression of floating point values in 16bit, which is expected 

to be useful in big-data and AI area, and implemented by 

hardware in GPU accelerators adopted in TSUBAME3.0. As 

another feature, each compute node has a high-speed and 

large capacity (2TB) NVMe SSD. The total capacity of SSDs are 

1.08PB. Also shared large-scale storage is more powerful than 

ever; the total capacity is 15.9PB and transfer speed is 150GB/

s. This storage hierarchy can be harnessed for extremely high-

speed big-data analysis.

	 TSUBAME3.0 has excellent power efficiency, largely 

owing to GPU accelerators of the latest generation. We have 

conducted performance measurement of the HPL benchmark 

with 144 compute nodes. When the parameters are optimized 

for better power efficiency, the performance of 1.998PFlops 

has been achieved with power consumption of 141.6kW. The 

power-performance ratio, 14.11GFlops, won world No.1 in the 

Green500 List in June 2017[3].

	 The cooling system of TSUBAME3.0 is also 

highly optimized for energy saving. We have used and 

analyzed indirect liquid cooling in TSUBAME2.0/2.5 and 

liquid submersion cooling in TSUBAME-KFC prototype 

supercomputer. Based on such knowledge, TSUBAME3.0 

cooling system consists of warm water cooling for CPUs and 

GPUs, the main heat sources, and indirect liquid cooling for 

the rest parts. This achieves high power-efficiency, stability 

and maintainability.

	 This report overviews the TSUBAME3.0 system, 

including its cooling system and facility, and describes the 

operation strategy.

Introduction 1

Overview of TSUBAME3.0, 
Green Cloud Supercomputer
for Convergence of HPC, AI and Big-Data

TSUBAME3.0 is one of largest supercomputers in Japan, which enjoys 47.2PFlops performance in 
half-precision. It drives broad range workloads, not only in traditional HPC area, but also in big-data and AI. 
It is expected to achieve theoretical PUE of 1.033, as results of our long-time efforts in improvement of density 
and energy efficiency. This report introduces architecture of TSUBAME3.0, while mentioning issues appeared 
in previous TSUBAME systems and new operation strategies as their solutions.
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Fig. 1   Illustration of TSUBAME3.0 system

Fig. 2   Block diagram of a TSUBAME3.0 compute node

TSUBAME3.0 Architecture 2
2.1  Computing Nodes

TSUBAME3.0 includes 540 uniform compute nodes, each of 

which consists of the latest CPUs, GPU accelerators, large 

main memory, high-speed interconnect and fast SSDs. Two 

Intel Xeon E5-2680 V4 Processor (Broadwell-EP, 14 cores, 

2.4GHz) are adopted as CPUs, and main memory capacity is 

256GiB, which composed of eight DDR4-2400 ECC REG DIMM 

32GB modules, and bandwidth of main memory is 154GB/s. 

As GPU accelerators, four NVIDIA Tesla P100 for NVLink-

Optimized Servers (16GB HBM2@732GB/s, 5.3TFLOPS@FP64, 

10.6TFLOPS@FP32, 21.2TFLOPS@FP16) are equipped. They are 

fourth generation GPUs in the TSUBAME series, which succeed 

Tesla S1070 (GT200) in TSUBAME1.2, Tesla M2050 (Fermi) in 

TSUBAME2.0 and Tesla K20X (Kepler) in TSUBAME2.5. Each 

node is also equipped with four Intel Omni-Path Architecture 

based Host Fabric Interfaces(HFI). The injection bandwidth is 

400Gbps in uni-direction and 800Gbps in bi-direction. As local 

storage, A NVMe-based high-speed SSD with 2TB capacity 

per node is used. High-speed interconnects and SSDs are 

especially important for big-data/AI usages.

	 Fig. 2 is a block diagram of a TSUBAME3.0 compute 

node. The node has the almost symmetric structure with 

even numbers of CPUs, GPUs and HFIs. In the figure, PCIe 

represents PCI-Express Gen3, whose transfer speed is 1GB/s 

per lane. A Broadwell-EP CPU has 40 PCI-Express lanes. Among 

of them, 16 lanes are connected to one of Omni-Path HFIs. 

Other 16 lanes are connected to a PLX PCI-Express switch, 

which is connected with two GPUs and another Omni-Path 

HFI. The rest lanes of CPU1 are connected to an NVMe SSD.

	 GPU accelerators on TSUBAME3.0 are Tesla P100 

with SXM2 form factor. Each GPU has four 20GB/s data link, 

called NVLink, which are used for direct data transfer among 

GPUs.
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	 Table 1 shows comparison between a TSUBAME2.5 

node and a TSUBAME3.0 node. The numbers shown are 

theoretical peak ones. The computation speed of GPUs 

is largely improved on TSUBAME3.0, whereas GPUs on 

TSUBAME2.5 have been upgraded in 2013. Especially the 

half precision (FP16) is highly improved. Also capacity and 

bandwidth of memory and the SSD are largely enhanced 

toward big-data applications.

2.2  Interconnect

All compute nodes, storages and management nodes are 

connected via interconnect based on the Intel Omni-Path 

Architecture. As the more important characteristics of the 

interconnect, compute nodes are connected in a fat-tree 

topology with full bisection bandwidth. The tree topology 

consists of director switches, edge switches and compute 

nodes as leaves. Each chassis contains nine compute nodes 

and two edge switches. Each edge switch has 18 downlinks 

connected to nine nodes, and 18 uplinks connected to three 

director switches.

	 The design of the entire interconnect topology on 

supercomputer has a heavy impact especially on performance 

of large scale computations. TSUBAME3.0 adopts the full 

bisection fat tree, after its success in TSUBAME2.0. On this 

topology, all communication passes between arbitrary ports 

can be established without contention theoretically. Since 

communication in a certain job does not affect performance 

of other jobs, this topology is suitable to supercomputers 

in universities, which accommodate applications with wide 

variety in the scale and communication patterns. While 

the basic topology is common between TSUBAME2.0/3.5 

and TSUBAME3.0, the former has used the static routing 

method with a fixed routing table, thus we have observed 

performance degradation caused by network contentions 

in certain communication patterns [4]. On the other hand, 

TSUBAME3.0, with the adaptive routing method that 

dynamically finds communication paths, such degradations 

are expected to be solved.

2.3  Storage
2.3.1  Global Storage Area

Shared storages with peta-scale capacity and high access 

speed are essential components in supercomputers. 

On TSUBAME2.5, a global storage system that is equally 

accessible from all compute nodes has largely contributed to 

convenience in the usage of the supercomputer. TSUBAME3.0 

inherits this direction, while capacity and access speed are 

largely enhanced. Considering flexibility in the operation 

and localization of effects of failures, the TSUBAME3.0 global 

storage, shown in Fig.3, consists of three systems, based on 

Lustre parallel file system. Each system has 5.3PB effective 

capacity and the total capacity is 15.9PB.Table 1   Comparison between a TSUBAME2.5 node 
	 and a TSUBAME3.0 node. The aggregated 
	 number is shown within a node.

Fig. 3   The global storage of TSUBAME3.0

Overview of TSUBAME3.0, Green Cloud Supercomputer
for Convergence of HPC, AI and Big-Data
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2.3.2  Scratch Area

Modern supercomputers should support extremely frequent 

file I/O requests from compute nodes. It is especially important 

for recent workloads including big-data applications. Global 

file systems are often designed to optimize I/O performance 

for files with large sizes, however, some workloads including 

machine learning may include frequent I/O requests to a large 

number of small files. In such cases, parallel file systems like 

Lustre tend to suffer from bottleneck in meta data servers 

(MDS), which prevents performance improvement. 

One of solutions is to introduce a Flash-based “Burst Buffer” 

system, which works as a shared cache system of global file 

system. In the design of TSUBAME3.0, we did not adopt this 

approach due to issues in cost performance of current Burst 

Buffers.

	 Instead, we provide local Flash SSDs attached to 

compute nodes for highly frequent file I/O. This approach is 

basically similar to that in TSUBAME2.5, however, it has been 

largely enhanced in the following aspects. First, both of the 

capacity and access speed are highly improved as shown in 

Table 1. Secondly, TSUBAME3.0 support temporary parallel 

file systems as follows. Since each SSD is equipped to one of 

compute nodes, it is only visible from the node without any 

special treatments. This situation is inconvenient for multi-

node jobs. In order to improve usability, we have adopted 

a technology called BeeOND [6], which bundles several SSDs 

into a temporary parallel file system based on BeeGFS [5]. 

The created file system is alive during execution of a multi-

node job; thus it can be used as a shared scratch area.

Preparation of Facility 3
In the design phase of TSUBAME3.0, our purposes included 

achievement of high performance system with high density 

and high power efficiency. For this purpose, we have required 

preparation of basic facility, since we noticed that the 

building of GSIC, which is more than 40 years old, was weak 

as a modern data center. Also we considered the possibility 

of parallel operation of TSUBAME3.0 and TSUBAME2.5, which 

presented other challenges in the floor space and the electric 

power limitation. In order to solve the above issues, we have 

conducted repair work of the GSIC building. Moreover, 

in order to reduce operation costs, the cooling system of 

TSUBAME3.0 is highly power efficient at the world’s top level.

3.1  The Server Room

Modern supercomputers have tended to increase the number 

of nodes for performance improvement, which requires larger 

footprint area. On the other hand, TSUBAME series have 

introduced high density system design to reduce footprint. 

Especially, the replacement this time is faced with stricter 

condition since both TSUBAME3.0 and TSUBAME2.5 will be 

settled in the building. Not only for reducing footprint, higher 

density is also important for improvement of power/cooling 

efficiency, which has been and will be important in designing 

supercomputers. In TSUBAME3.0, we have planned to adopt 

direct liquid cooling as described later. While this method 

has an advantage in energy saving, it tends to increase the 

weights of racks, due to liquid pipes and coolant liquid itself.

From the above discussion, we have considered that the 

weight per rack could be close to 1t/m2. Since there was 

no room in the GSIC building that tolerates such a tough 

condition, we conducted repair work for the new machine 

room of TSUBAME3.0 as follows. The space has been originally 

used for TSUBAME2.5 storage system.

●	 To accommodate TSUBAME3.0 system and future 

	 possible extensions, the floor loading capacity of 

	 the entire room is 100t.

●	 To improve the floor loading capacity and reduce the 

	 system costs, the slab floor is adopted, instead of free 

	 access (raised) floor. Cables and pipes are put over the 

	 racks.

●	 To widen the space for cabling and piping, the original 

	 ceiling is removed.

By doing these, we have prepared the new server room 

of around 145m2 area, as shown in Fig.4. As a result of the 

preparation, the room can accommodate the rack design 

of with high density, and the required area for the entire 

TSUBAME3.0 system including storages is less than that of 

TSUBAME2.5 as illustrated in Fig.5. There is also sufficient 

room for future possible system extension.
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Fig. 4   TSUBAME3.0 server room 
	 (Upper: before construction, 
	 Lower: after construction)

Fig. 5   Placement of TSUBAME3.0 and TSUBAME2.5

3.2  Power Supply Facility

As one of energy saving methods of supercomputer systems, 

we have considered to introduce power supply facility with 

higher voltage than 200V used in TSUBAME2. The candidates 

included 3-phase 4-wire 415V and 3-phase 3-wire 480V. Using 

the higher voltage generally reduces energy loss in wires 

and wiring costs. On the other hand, the new power facility 

should have generality to support commodity servers for 

management, network switches and so on. For this purpose, 

we adopted 3-phase 4-wire 415V, since we can get one-phase 

240V connection from it easily, which supports almost IT 

equipment and reduces procurement costs. Based on above 

considerations including costs for new trances, discussions 

with the facility division of Tokyo Tech, and we have prepared 

power 3-phase 4-wire supply facility with 2MW capacity. The 

average power consumption of TSUBAME3.0 is less than 1MW 

finally, thus there is room for future extensions both in space 

and electric capacity.

3.3  Cooling Facility

In order to reduce operation costs of supercomputers, 

we need to reduce energy consumption. The reduction 

is important not only for computing equipment, but for 

the cooling facility. For example, even in TSUBAME2 with 

optimized cooling system, 22% electric power of the entire 

system is consumed in the cooling system. The electric fee 

of TSUBAME2 exceeds $1M per year, thus more than $200K is 

paid for cooling.

	 To make cooling systems energy efficient, GSIC has 

promoted research including operation and evaluation of 

air/liquid hybrid cooling introduced in TSUBAME2 and liquid 

submersion cooling in TSUBAME-KFC[7].

Through these studies, we have learned that hybrid cooling 

using air requires coolant water with low temperature 

(10℃ or less) for indirect cooling, thus it needs chillers with 

compressors, which becomes the major source of power 

consumption. This issue is mostly solved by direct cooling 

as in TSUBAME-KFC, since the coolant liquid can be in high 

temperature (30℃ or higher). On the other hand, there are 

other issues on maintenance costs and racking space in liquid 

submersion cooling.

	 From the above discussions, TSUBAME3.0 uses 

direct liquid cooling without intervention of air for CPUs 

and GPUs, which are major heat sources. For this purpose, 

water pipes go inside each node, and the water is cooled by 

cooling towers on the rooftop of GSIC building. This method 

Overview of TSUBAME3.0, Green Cloud Supercomputer
for Convergence of HPC, AI and Big-Data
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Fig. 6   An example of node resource partition on 
	  TSUBAME3.0

is expected to achieve free cooling without compressors 

throughout the year. The expected average PUE (power usage 

efficiency) is estimated to be 1.033, which means the power 

consumption of cooling system is around 3% of the whole 

system, and helps energy saving tremendously.

Operation 4
The one of major focuses in operation of TSUBAME series has 

been usability to broaden the horizons of users, including who 

are using PCs or small scale clusters for their computations. 

TSUBAME3.0 introduces several new services to improve the 

high usability.

4.1  Dynamic Node Partitioning based on Container 	
	 Technologies

On TSUBAME, there are large number of running jobs with 

wide variety in the aspect of computing resources; some 

jobs use only CPUs, while other mainly use GPUs. The 

number of used processors and nodes are also different. To 

accommodate these jobs efficiently, node partitioning is a 

good approach. In TSUBAME2.0/2.5, each of 400 nodes have 

been partitioned into “CPU part” and “GPU part” by using VM 

technology. However, since the partition method and node 

set to be divided have been static, we have observed unused 

computing resources. As another issue, since VM technology 

is not so matured when the operation of TSUBAME2.0 

has been started, three GPUs on a single node cannot be 

partitioned.

	 TSUBAME3.0 introduces more flexible and dynamic 

partitioning method based on modern resource grouping and 

container technologies, Docker. Each partition can have direct 

access to GPUs and Omni-Path HFIs efficiently. Fig. 6 shows 

an example of flexible node partition. Since the partitions 

can be created shortly, they are dynamically invoked for each 

submitted job by cooperation with the job scheduler. With 

this method, static partitioning in TSUBAME2 is not needed, 

and any nodes can be partitioned, which leads to efficient 

usage of computing resources in the entire system.

4.2  Efficient Resource Usage

In the operation of TSUBAME2.0/2.5, GSIC has made several 

improvements in operation. For example, we have modified 

operation policy of TSUBAME2 in order to make the backfilling 

mechanism of job scheduler more efficient [8]. Here the usage 

fee of a job not only depends on the consumed time but on 

the specified limitation time. TSUBAME3.0 adopts this method 

for better resource utilization.

	 On the other hand, there still remained several 

issues that may degrade resource usage; one of them is the 

static node partitioning described in the previous section.

	 Another issue comes from node reservation system. 

In addition to the typical usage via job scheduler, users 

can reserve nodes during the specific dates beforehand. In 

TSUBAME2, the granularity of date specification has been one 

day (10:00 to 9:00 next day). In TSUBAME3, the granularity will 

be one hour, thus users feel free to use the node reservations 

(As of writing this manuscript, the reservation system is under 

construction).

	 Moreover, in TSUBAME2, some special nodes are 

used for node partition and other some nodes are used for 

node reservation. On the other hand, there is no specific role 

assigned to TSUBAME3.0 nodes; all nodes can be used for any 

purposes. Thus the system is flexible to the changes of system 

load and job mixtures in order to keep better resource usage.

4.3  Providing System Image per Job with Containers

TSUBAME2.0/2.5 has been operated for more than six years, 

which is longer than the previous plan. On such systems 

with long lives, some users become aware of staleness of OS 

kernels, standard libraries, and so on. While it was mitigated 

by the OS upgrade to SUSE Enterprise Linux 11 SP3 in 2013, 
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we still observed difficulties in installation new applications 

especially in AI area, thus some users download and build 

such software including standard libraries [9]. This situation 

with staleness is also undesirable from the aspect of security, 

while TSUBAME nodes use up-to-date security patches. This 

issue mainly comes from backward incompatibility in update 

of OS and/or standard libraries. OS update also raises heavy 	

costs in verification tests of all running ISV applications.

	 TSUBAME3.0 harnesses the container technology, 

Docker, in order to divide the system image per node and 

the bare-metal image (As of writing this manuscript, this 

mechanism is under construction). With this mechanism, 

users can choose system images for their usages, such as an 

image with the latest libraries, an image where a specific ISV 

application has been verified, and so on. This mechanism 

will be useful to reproduce the past experimental results that 

depend on libraries of the previous version. From the aspect 

of security, it is difficult to support system images created by 

end-users directly. Instead, GSIC will provide several useful 

images to users.

4.4  External Network Connections

In TSUBAME2, computing nodes are basically isolated from 

Internets. Thus users send their programs and data from 

outside via interactive nodes. TSUBAME3.0 computing nodes 

are selectively allowed to communicate to the external 

network. The connection is 100Gbps via SINET5, thus there is 

flexibility in using external storage or computing services.

	 By harnessing this high network bandwidth, we are 

planning to make partial global storage directly reachable 

from external network via NFS or CIFS.

4.5  Releasing Monitoring Information

We make monitoring information of TSUBAME3.0 open via 

the web, as done in TSUBAME2 [10 ]. Users can view real-time 

information on node usage, storage usage, the scheduler 

and power consumption, etc. Also information on system 

troubles are available. Currently the trouble information is 

maintained by operators as CSV files internally, however, there 

is an issue in statistical analyses. We are planning to make all 

information machine-readable and more structured as open 

data. Additionally, we are preparing to provide information on 

each job to its owner user, which would be useful for users to 

improve their applications.

4.6  Paperless Account Application and External Usages

Users from Tokyo Tech can use paperless account application 

system from the “Tokyo Tech portal” web page as in 

TSUBAME2. Also external users can apply to TSUBAME3.0 

usage via several systems. One of them is HPCI, which is an 

infrastructure to connect major supercomputer systems in 

Japan.

	 Technically, a single TSUBAME2.5 user might have 

several user accounts with several attributes. On TSUBAME3.0, 

those accounts are unified per user, which would help the 

usability.

4.7  Grand Challenge System

TSUBAME3.0 also inherits the “grand challenge” from 

TSUBAME2, which provides extremely large computing 

resources to a few groups, selected via peer-reviews [11]. 

On TSUBAME2, 20 groups have used the whole computing 

resources for 12 to 24 hours, and 14 groups have used 1/3 

computing nodes for one week. TSUBAME3.0 also provides 

this system towards new computing challenges.

Summary 5
This report described the overview of TSUBAME3.0, which 

was started its operation on August 2017. TSUBAME3.0 

inherits number of advantages of TSUBAME series, including 

high usability and power efficiency. Moreover, it adopts new 

features not only for traditional HPC applications but big-

data/AI area.
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It has been learned recently that deep learning can achieve 

far better predicting performance than existing methods 

in image recognition, natural language processing, speech 

recognition and many other fields where machine learning is 

being applied. The basic technology of neural networks used 

in deep learning has a long history dating back to the 1950’s. 

As we entered the 2010’s, the neural network technology 

with its long history have made the breakthrough as “deep 

learning” as described above because it is thought to have 

successfully combined all the advances of algorithms, large-

scale data and high computing powers. Even today, it would 

be difficult to achieve an outstanding predicting performance 

by deep learning if one of the three lacks. In this article, we 

focus on one of the three pillars supporting deep learning: 

Computing performance.

	 It has become a standard approach to use highly 

efficient GPUs for training in many deep-learning tasks. 

Nevertheless, the training process is still time-consuming even 

with the latest GPUs because models have also grown massive 

and complex as GPUs have improved significantly. Taking a 

long time on training means you have a limited number of 

times to do trial and error for models and parameters needed 

to achieve high accuracy, making it difficult to produce a 

good predicting performance. It also means there is a limit to 

the usable data size. Thus, using a number of GPUs in parallel 

is crucial in accelerating calculation.

	 We once conducted a visual representation learning 

of a chemical compound using Neural Fingerprint [1] and its 

advanced method as the TSUBAME trial use by industries 

in fiscal 2015 with the aim of applying deep learning in a 

drug development field. As a problem of machine learning, 

it comes down to the binary classification on the presence 

of activation. It took 10-20 hours per task, which is shorter 

than learning a typical model of general object recognition 

using CNN. However, because there were 72 tasks, if 

hyperparameter tuning is included, a computing performance 

equal to or greater than them was required. This is one of the 

reasons we took on this as a subject of TSUBAME2. With each 

of the 72 tasks being independent, we were able to conduct 

the experiment just by a simple parallel execution. Please 

refer to our trail use report for details of the experiment.

	 On the other hand, we have also conducted 

research to make non-independent, single learning even 

faster and implemented them. ChainerMN described in 

this article is one of such initiatives. ChainerMN has been 

developed as an add-on package to provide a distributed 

learning function to Chainer by installing it. In the course of 

developing ChainerMN, we took the following features into 

consideration:  

1.	 Flexibility : Chainer is a flexible framework based on its 

Define-by-Run approach and ChainerMN is designed 

not to ruin the flexibility aspect. This allows for easy 

distributed learning even in complex use cases such 

as dynamic neural networks, generative adversarial 

networks and reinforced deep learning.  

2.	 High speed : We selected technologies assuming 

practical workloads in deep learning from the very 

beginning of designing ChainerMN as well as exercised 

ingenuity with respect to implementation so that 

hardware performance is fully utilized. This has resulted 

in the highest performance shown in a comparison 

experiment with other frameworks as detailed 

hereinbelow.

Introduction 1

ChainerMN: Scalable Distributed Deep 
Learning Framework

One of the keys for deep learning to have made a breakthrough in various fields was to utilize high computing 
powers centering around GPUs. Enabling the use of further computing abilities by distributed processing is 
important not only to make the deep learning bigger and faster but also to tackle unsolved challenges. This 
article focuses on the distributed processing of deep learning and describes the design, implementation and 
evaluation of ChainerMN, the distributed deep learning framework we have developed.

Takuya Akiba, Keisuke Fukuda
Preferred Networks, Inc.
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size is called a batch size. A typical batch size ranges from 

several tens to several hundreds.

	 Please note that the above description is based 

on a standard supervised learning. Nonetheless, in case that 

neural networks are applied to other frameworks such as 

unsupervised learning and semi-supervised learning, the 

parallelizing method we will explain below is applicable and 

ChainerMN is also usable.

2.2  Two parallelization approaches

There are generally two types of approaches to speed up deep 

learning by distributed processing: data parallel and model 

parallel. In the data-parallel approach, each worker has a 

model replica and calculate gradients of different minibatches. 

Workers use these gradients to update the model in a 

collaborative manner. In the model parallel approach, each 

worker has a portion of the model and work in cooperation 

with others to do the calculation for one minibatch.

	 The model-parallel approach was actively used in 

the days when GPU memory was small. At present, the model 

parallel is rarely used in its basic form as the data parallel 

approach is being generally used. In the meantime, some 

issues with the data paralleled approach have surfaced while a 

research on a new form of the model parallel is underway. The 

model parallel and the data parallel can be used at the same 

time as well.

2.3  Synchronized and asynchronous in data parallel

In this subsection, we will focus on the dataparallel approach 

which is commonly used now. The data-parallel approach is 

roughly divided into synchronized and asynchronous types 

and we explain about the former first.

	 Each iteration in synchronized, data-parallel deep 

learning is composed of the following four steps:

Fundamentals of Distributed 
Deep Learning 2
2.1  Basic deep learning

We can express the prediction by neural networks against 

input data  x  as  f ( x ; θ) where θ is parameter for neural 

networks.

	 Learning in neural networks using backpropagation 

and stochastic gradient descent or its variations is an iterative 

algorithm. Each iteration is composed of the following 

three steps:

　　1. Forward computation

　　2. Backward computation

　　3. Optimization

	 This article is about ChainerMN, first explaining the 

basic elements of distributed deep learning, followed by the 

implementation of ChainerMN. Finally, we will present the 

results of our evaluation experiment.

	 In the forward-computation step, first the prediction  

f ( x ; θ) is calculated against a input data point x . Then, the 

loss E  is calculated to represent the difference from the correct 

output y for x . Here, the cross entropy and other indicators 

may be used. 

	 In the backward-computation step, g = ∂E  , the 

gradient of the parameter θ in the direction of decreasing the 

loss E, is calculated. Gradients for all parameters are calculated 

using the chain rule while going backward from the output 

layer to the input layer.

	 In the optimize step, the parameter θ is updated 

using the gradient g. The simplest rule is to update 

θ to θ-ηg where η is parameter called a learning rate. 

	 In practice, instead of using a single training 

example in an iteration, the forward and backward 

calculations are performed simultaneously against multiple 

training examples and optimization is executed using the 

average of gradients against all the examples. The input 

examples used in an iteration is called a minibatch while its 

∂θ
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ChainerMN: Scalable Distributed Deep Learning Framework

　　1. Forward computation

　　2. Backward computation

　　3. All-Reduce communication

　　4. Optimization

	 This has an additional step “All-Reduce” to the 

regular iteration described earlier. In this step, workers 

communicate with each other to find the average of gradients 

calculated by individual workers and distribute the average. 

All workers update the model using the gradient they have 

obtained through the communication. If we define the 

batch size processed by each worker as b and the number of 

workers as n, the gradient obtained through communication 

is equivalent to the gradient in the batch size bn. This means 

gradients are calculated using more training data in one 

iteration, improving the gradient quality and accelerating the 

learning process.

	 Asynchronous type, on the other hand, uses special 

workers called a parameter server. The parameter server 

controls model parameters. Normal workers send gradients 

to the parameter server once the gradients are obtained by 

forward and backward calculations. The parameter server 

receives and uses the gradients to update the model. Workers 

receive new model parameters and calculate gradients again.

3.1  API Design

Chainer is a framework with its define-by-run feature. Define-

by-run is a model that takes advantage of the flexibility of 

script languages where learning models and computational 

flows are defined at runtime. A define-and-run approach, 

on the other hand, is a model that pre-defines a structure 

of networks, after which data is input and calculation is 

done. While potentially easier to optimize performance, this 

approach is said to lack flexibility.

	 Chainer provides programming models that enable 

you to define complex neural networks flexibly or make 

modifications during runtime thanks to its define-by-run 

approach. This lets researchers and engineers work on new 

models or complex models through trial and error with ease 

and therefore is suitable for research and development of 

machine learning. 

	 Upon development, we designed the API with the 

objective of making it easily portable from existing Chainer 

programs without putting limitations on the flexibility of 

Chainer.

	 ChainerMN is designed to add a communication 

function to existing Chainer programs by adding additional 

component to Optimizer. On top of this, basic porting can be 

done just by adding the Scatter process which distributes data 

for data parallel computations. Other parts i.e. Iterator, Updater 

and Evaluator do not need to be changed in basic use cases. 

Because of this API design, it allows various Chainer programs 

to be ported with less efforts while making the most of the 

advantage given by define-by-run.

3.2  Parallel computation model of synchronized data parallel

The data-parallel, synchronized computational model has 

been adopted by the current ChainerMN. Each computational 

model is described already.

	 First, we decided to use the data-parallel approach 

because existing deep learning applications would easily be 

extensible and faster learning process through data parallel 

was highly expected. Roughly speaking, data parallelization is

tantamount to increasing a minibatch size in a normal deep 

learning application and has its advantage of being applicable 

without having to make major changes in algorithms and 

codes of existing programs. However, caution should be 

exercised regarding accuracy of trained models as stated later.

	 Whether the synchronized or asynchronous type is 

desirable is also a nontrivial question since different kinds of 

strategies have been taken in each implementation and results 

would vary depending on tasks or settings. The paper [3] shows 

experimental results that the asynchronous type is less stable 

in terms of convergence whereas it is faster to converge in 

the synchronization. In addition, Allreduce is available in the 

synchronized type and we can also benefit from the optimized,

proven, group communication mechanism of MPI while in the 

asynchronous model the implementation scheme that uses a 

parameter server is used in general. Based on these points, we 

decided to adopt the synchronized type for ChainerMN at first.

Implementation of ChainerMN 3
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4.1  Important notes regarding evaluation

One of the factors making distributed deep learning difficult 

is that improving throughput does not necessarily mean 

better learning efficiency. Take the data-parallel approach 

for example. The more you increase the number of GPUs, the 

larger the batch size gets. However, if the batch size gets large 

enough to have an adverse effect on learning, the accuracy of 

the model will start to decrease gradually. Two causes of this 

have been pointed out. First, in case of learning for the same 

number of epochs, the number of iterations will decrease and 

the model may not mature. It is also known that as dispersion 

of gradients gets smaller, it likely leads to local solution of poor 

quality called sharp minima resulting in a model with bad 

generalization ability [2].

	 It can be said that benchmark results reporting 

throughput only without considering these challenges 

facing distributed deep learning are insignificant. With the 

3.3  Implementation and Optimization

A communication pattern as a HPC application isrelatively 

simple because ChainerMN, at the time of writing this article, 

uses the data-parallel synchronized type model. Roughly 

speaking, auxiliary parts include Allreduce, a major process to 

replace gradients which are learning and evaluation results, 

and Scatter which arranges necessary data before learning.

	 Allreduce is the area that especially requires speed 

because it is called in every learning iteration and needs to 

process a large amount of data. We attempted to improve 

speed by using not only MPI but also NCCL library developed 

by NVDIA. NCCL is a highly-optimized communication library 

which provides a faster Allreduce process between NVIDIA 

GPUs within nodes. By hierarchically combining NCCL which 

performs communication among GPUs within nodes and 

MPI which performs communication among nodes, we have 

successfully implemented a faster Allreduce process.

	 (Note: NCCL library version 2 was released 

as we were writing this paper. NCCL2 library supports 

communication among nodes using Infiniband, which realizes 

a highly optimized Allreduce regardless of MPI.)

Evaluation 4

simple Allreduce being the major communication pattern, a 

superficially high performance and scalability can be achieved 

easily by increasing a batch size or reducing a synchronization 

frequency. This kind of setting, however, generates no useful 

learning result. Although our GPU memories had a plenty of 

margin this time also, we made the setting to limit the batch 

size handled by each GPU so that the model could achieve a 

sufficient accuracy.

4.2  Evaluation results

The figure 1 shows the performance evaluation using a model 

called ResNet-50 [4] trained on ImageNet dataset which is 

being widely used as a benchmark of image recognition. In 

this evaluation, we compared ChainerMN, MXNet, CNTK and 

TensorFlow on a computing environment with 1-128 GPUs. 

For the detailed settings and supplemental figures of this 

experiment, please refer to our blog post [5].

	 While Chainer did not perform as well as MXNet 

and CNTK with 1 GPU, it was the fastest with 4 GPUs or more. 

Because Chainer is a defineby- run style framework written 

in Python, CUDA kernel issuance and other processes in 

CPU are prone to become a bottleneck, which we believe is 

unfavorable to Chainer as opposed to C++ based MXNet and 

CNTK. Nevertheless, Chainer was the fastest with 4 GPUs or 

more thanks to its hierarchical communication of NCCL and 

MPI combined.

	 The possible reason for TensorFlow’s low  

performance is due to its client-server model using

gRPC. A client-server model has a higher overhead than the 

collective communication Allreduce and we also observed 

a phenomenon that gRPC performance became lower with 

huge messages during the experiment [6].

	 As stated above, we believe any deep learning 

benchmark is meaningless without evaluating evaluation. 

Fig. 1   Training Speedup for ImageNet Classification	
	 （ResNet-50)
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computing power, high-speed interconnection and a strong 

network file system and local storage. We believe by having 

TSUBAME3.0 and Chainer/ChainerMN combined together we 

can have a big advantage when competing globally in the 

research and development.
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In this article, we described the fundamentals of distributed 

deep learning and the design, implementation and evaluation 

of ChainerMN. Chainer and ChainerMN are designed to have 

both high flexibility and scalability with its primary object of 

accelerating research and development in deep learning. We 

will continue making improvements by tackling challenges 

such as model parallel, communication and computation 

overlaps, asynchronous computation among workers, 

optimized communication by compressed gradients, and 

failure resistance.

	 While deep learning has already become essential in 

some applications, the global competition in its research and 

development continues to intensify as the technology is ever 

making rapid progress. In order to advance the R&D activities 

efficiently, it is vital to have a storage that stores and utilizes 

learning data with its size reaching up to several terabytes at 

times, an accelerator that makes vast linear algebra operations 

faster as well as robust computing infrastructure including 

low-delay, broadband networks to exchange a huge amount 

of gradient data.

	 TSUBAME3.0 is a big-data supercomputer with 

the best computational efficiency in the world, a firstrate 

Conclusions 5

ChainerMN: Scalable Distributed Deep Learning Framework

Figure 2 represents computation time and accuracy when 

distributed learning was conducted using ChainerMN. The 

figure shows ChainerMN was able to maintain accuracy with 

128 GPUs as the learning time became faster, in comparison 

with 8 GPUs.

Fig. 2   Achieved Accuracy for ImageNet classification
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New chemical structures are crucial for new functions such 

as biological activities which are relevant to drug discovery. 

The question is how we can create new chemical structures a 

priori in terms of three-dimensional coordinates. Moreover how 

can we define the structures in solution? We demonstrate here 

our experimental efforts to synthesize two new molecular 

scaffolds, which take “defined” 3D structures. 

	 Helical molecules based on artificial amino acids 

can literally resemble natural α- helix composed of α- amino 

acids. However, structural features such as pitch, diameter, 

and the number of residues per turn of these new helical 

molecules are completely different from those of natural 

α- helix. Such different features can be utilized as functional 

peptide mimics, e.g. artificial helix composed of smaller 

number of repeat units can cover similar length with α- helix 

composed of larger number of α- amino acids. This is one of 

the experimental strategies to create new chemical diversity.

	 Our another focus is to create biological functional 

analogues (i.e., non-lipid analogues) of lipid mediators. Our 

target lipid mediator is a flexible molecule which contains 

many rotatable single bonds. This molecule can activate at 

least three receptor subtypes. We try to define the structure 

responsible for activation of the respective receptor. In order 

to consider the 3D structures (conformations), we need to 

take into account all possible conformations to characterize 

a single chemical molecule. We need to know the population 

of conformers, which may be affected by the environmental 

conditions such as solvents. 

	 Medicinal chemistry essentially studies design and 

optimization of multiple interactions of biomolecules such as 

proteins, DNA, RNA and others, with organic compounds such 

as medicines and antibodies. Therefore, we need to consider 

multiple combinations of accessible conformational space 

of molecules in order to characterize optimal interactions. 

Chemists had been often proposing chemical structures with 

their intuitions. However, nowadays chemists are forced to 

consider free-energy based pictures of chemical structures 

and molecular motions. Efficient GPU computing is required 

to establish such free-energy based pictures of molecules, 

which will be related to the experimental phenomena. 

Particularly medicinal chemists are forced to establish non-

linear relationships between conformational populations and 

biological activities to design/create new chemical structures.

	 We demonstrate here our experimental efforts to 

synthesize new molecules which take “defined” 3D structures. 

We are trying to combine the experimental events with GPU 

computation, which were/are carried out on the TSUBAME 2.5 

supercomputing system. We will demonstrate here some of 

such combinations.

Introduction 1

Creation of Chemical Structures 
Aimed for Drug Design, Facilitated 
by Efficient GPU Computing

New chemical structures are crucial for new functions such as biological activities, which are relevant to drug 
discovery. The question is how we can create new chemical structures a priori in terms of three-dimensional 
coordinates. Moreover how can we define the structures in solution? We demonstrate here our experimental 
efforts to synthesize two new molecular scaffolds which take “defined” 3D structures such as helices based on 
artificial amino acids and a structured lipid mediator. In order to design the 3D structures (conformations), the 
population of conformers, which is affected by the environmental conditions such as solvents must be taken 
into account. Medicinal chemists are now forced to change their intuitions to free-energy based pictures 
of chemical structures and molecular motions. Combination of the GPU computing with the experiments, 
particularly synthetic chemistry is required to create new chemical structures.

Yuko Otani*  Tomohiko Ohwada*
* Graduate School of Pharmaceutical Sciences, The University of Tokyo

Creation of ordered structures, different 
from naturally occurring molecules 2
2.1  Length-dependent convergence to organized structures 
	 of nitrogen- pyramidalized bicyclic β- proline oligomers. 

Peptides and proteins take ordered structures by using 

hydrogen-bonds. However such ordered structures are 

collapsed when they are exposed to water, because external 

water makes hydrogen bonding with amino acid residues. 

Therefore, tertiary amides, which lack hydrogen atom on the 

amide nitrogen atom, can create helical molecules, which are 

robust even in water environment. However, tertiary amides 

contain amide cis-trans isomerization. The monomeric 
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α- proline amide (N-acetyl-L-proline-NHMe) favors trans-

amide conformation with a trans:cis  ratio of approximately 

73: 27 in D2O. On the other hand, β- peptides, because they 

can form stable regular structure and are stable to proteolytic 

degradation. Oligopeptides of non-natural β-proline and its 

analogues can also adopt ordered structures. However, control 

of the amide cis-trans equilibrium in oligomers of β -proline 

analogs is often less effective than in α-proline oligomers. 

However, peptide homooligomers of β- amino acids 

bearing the bicyclic 7-azabicyclo [2.2.1] - heptane skeleton 

(7-azabicyclo[2.2.1] heptane-2- carboxylic acid, 1, Figure 1), 

which is a conformationally constrained β- proline analog [1-8], 

have been synthesized (dimer 2, trimer 3, tetramer 4, and 

pentamer 5, Figure 1(a)). 

	 A derivative of dimer 2 with a tBuOCO （Boc） group 

at the N-terminal and a N-methylamide at the C-terminal 

exhibits trans-cis  equilibrium with a slight preference for the 

trans  form (trans : cis = 55: 45 in CDCl3 ) (Figure 1(b)). However, 

detailed solution structural analysis of oligomers longer 

than the dimer was hampered by line-broadening of NMR 

signals due to slow interconversion between amide rotamers. 

Furthermore, the bicyclic amide takes a nonplanar structure 

in solution, and the amide is tilted to either side of the amide 

plane (formed by the amide nitrogen and two bridgehead 

carbons). The experimental circular dichroism (CD) spectra 

of the hydrochloride salts of unprotected oligopeptides (2, 3, 

4, and 5) in methanol were also reported [3] (see Figure 3 (a)).  

They showed characteristic and intense CD with the minimum 

at around 198 nm and the maximum at around 217 nm, and an 

isodichroic point at around 206 nm. Furthermore, the intensity 

per residue at the maximum increased length-dependently. 

These observations suggested that thermodynamically 

stable regular structure could be induced as the oligomer 

is elongated. However, further investigation was needed to 

enable the assignment of major structures in solution.

	 We estimated the rotational barrier of the 

monomeric amide of bicyclic β-proline by NMR spectroscopy 

and performed MD simulation of homooligomers with an 

umbrella sampling method to accelerate amide bond rotation 

and to enable sampling of a wide range of conformations [9]. 

We found that as the oligomer is elongated, the ratio of trans-

amide bonds increases, which implies that extended helical 

structures are stabilized. This scenario is consistent with the 

observed CD spectra, in which the intensity of the signal per 

residue increases as the oligomer is elongated.

	 The EXSY spectrum of N-Ac-1-NHMe indicated that 

rotational barriers of N-Ac-1-NHMe in CD3OD were obtained as 

Δ G ‡
t → c, 300 K = 17.9 ± 0.5 kcal/mol and 

Δ G ‡
c → t, 300 K = 17.7 ± 1.9 kcal/mol. 

The rotational barrier of N-Ac-1-NHMe in D2O estimated by 

line-shape analysis was similar to that in CD3OD : 

ΔG ‡
t → c, 300 K = 17.9 ± 0.4 kcal/mol. Thus, the solvent effect 

on the amide equilibrium and the rotational barrier is small. 

The barrier is smaller than the reported value of the rotation 

barrier of acetyl-L-proline-NHMe, which has Δ G ‡
t → c, 298 K 

= 20.40 kcal/mol. This is due in part to the reduced double 

bond character of the amide bond in N-Ac-1-NHMe, which is 

expected to take a nitrogen-pyramidal amide structure as in 

other related bicyclic compounds.

	 Each conformer was classified with respect to the 

dihedral angle ω along the amide linkage and depicted as 

a combination of t (trans) and c (cis)  from the N-terminal 

position in the cases of oligomers longer than the dimer. 

Populations of all conformers arising from different 

combinations of amide rotamers are calculated by MD 

simulation with an umbrella sampling method (Figure 2(a)).

Fig. 1   (a) Designed β -proline analogue and oligomers. 
	 (b)Amide cis-trans isomerization.

Creation of Chemical Structures Aimed for Drug Design, 
Facilitated by Efficient GPU Computing
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	 It is suggested that the rotamers with high contents 

of trans -amide are more highly represented throughout the 

oligomers. For example, the most populated conformers in 

methanol were t  for 2 (57%), tt  for 3 (40%), tt t  for 4 (28%) 

and tttc for 5 (23%) (Figure 2(a) and (b)). Therefore, The ratio 

of trans - amide among all amide bonds, averaged over all 

conformers, increased gradually with increasing oligomer 

length in methanol: the percentages of trans-amide bond in 2, 

3, 4, and 5 are 57%, 65%, 68% and 70%, respectively (Figure 1a). 

	 The CD spectra of all possible rotamers of oligomers 

2, 3, 4, and 5 were calculated by using the TDDFT method at 

the level of IEF-PCM (methanol) - B3LYP/TZVP and population-

averaged for each rotamer according to the probability 

obtained from MD simulation (Figure 3(b)). 

	 The obtained calculated CD spectra shows similar 

shape to the experimental CD spectra, and the intensity 

per residue at both minimum and maximum increased 

with increasing oligomer length. Therefore, this study 

implied that increase in molecular freedom, that is, nitrogen 

pyramidalization may enhance generation of ordered 

structures. This is a new paradigm to establish ordered 

structures.

2.2  Hydrogen Bonding to Carbonyl Oxygen of 
	 Nitrogen-Pyramidalized Amide

The amide bond is a key linkage in proteins, peptides and 

peptide mimics, serving to connect two neighbouring amino 

acids. Most amide bonds are planar, but nonplanar amide 

structures have been suggested to occur even in proteins and 

peptides. Although the magnitude of nonplanarity found in 

proteins and peptides is not large, some nonplanar amides 

with distinct ground states have been reported. In such non-

planar amides, the nitrogen atom gains a partial sp3-character 

(i.e., nitrogen-pyramidalization), and at the same time bond-

twisting occurs. This phenomenon results in increased 

electron density at the nitrogen atom, and decreased electron 

density at carbonyl oxygen, as compared with the situation in 

a planar amide.  While hydrogen-bonding to the pyramidalized 

electron-rich nitrogen atom has been experimentally and 

computationally investigated, there has been little study on 

the possibility of hydrogen bonding to the electron-deficient 

carbonyl oxygen atom of non-planar amides. 

Fig. 2   (a) Probability of each 
		  conformer in dimer 2, 
		  trimer 3, tetramer 4 
		  and pentamer 5 in 
		  methanol. 
	 (b) A representative tttt 
		  structure of 5.

Fig. 3   (a) Experimental and (b) 
	 simulated CD spectra of 
	 oligomers. (2: red, 
	 3: orange, 4: green, 
	 5: blue)



18

	 7-Azabicyclo[2.2.1] heptane amides are chemically 

stable and intrinsically nonplanar (Figure 4 and also 

Figure 1), and substitution at the bridgehead position of 

bicyclic β- proline derivatives ( 7-azabicyclo [2.2.1] heptane- 

2-carboxylic acids) can bias amide cis-trans isomerization 

toward either cis or trans, depending on the position of the 

bridgehead substituent (see section 2.3.). Homooligomers of 

optically active derivatives take helical structures with all-cis 

or all - trans amide bonds. Nonplanarity of amide structures 

in homooligomers can be detected in crystal structures. In 

solution, there is an equilibrium between two conformers, anti, 

i.e., the carbonyl group is tilted toward the opposite side of 

the C-terminal group with respect to the plane of the nitrogen 

atom and two bridgehead carbons, and syn, in which the 

carbonyl group is tilted toward the same side of the C-terminal 

group. But, because of the small energy difference between 

the anti and syn conformers and low inversion barrier, it has 

been difficult to detect the direction of pyramidalization in 

solution. We demonstrated the presence of hydrogen-bonding 

to the carbonyl group of nitrogen-pyramidalized amides by 

means of crystallographic and NMR analyses and vibrational 

circular dichroism (VCD) spectroscopy [8]. Our results indicated 

that such hydrogen-bonding is strong enough to switch the 

preferred direction of nitrogen-pyramidalization of ground-

state amide bonds of bicyclic β -proline derivatives (Figure 4). 

2.3  Complete control amide cis-trans  isomerization 
	 generate helical molecules

We have reported the synthesis and structural analysis of 

homooligomers of 7-azabicyclo[2.2.1] heptane-2- endo -

carboxylic acid, a bridged β - proline analogue (see section 

2.1.). Our further study of bicyclic oligomers with a substituent 

installed at the remote C4-bridgehead position (Figure 5(a)) 

revealed that a bridgehead methoxymethyl substituent 

completely biased the amide cis-trans equilibrium to the cis-

amide structure[5]. Homooligomers take helical structures. 

	 These helical structures were generated 

independently of the number of residues and irrespective 

of the solvent.  This complete selectivity is assumed at least 

partially to stem from steric repulsion between the bridgehead 

substituent and the neighboring residue. Thus, we expected 

that introduction of a substituent at the C1-bridgehead 

position adjacent to the carboxylic acid moiety, rather than 

the remote C4-bridgehead position (Figure 1(b)), would tip 

the cis-trans amide equilibrium towards trans - amide structure 

without the aid of hydrogen bonding. This expectation was 

realized [6]. Such homooligomer takes trans amide and the 

overall structure provide a helical structure, which is different 

from the helix based on cis-amide linkage (Figure 5(b)). In 

Figure 5, the energy-minimized structure of the trans - amide-

octamer as obtained by Monte Carlo conformation search 

followed by DFT geometry optimization in simulated water. 

The energy-minimized structure bears all- trans amides and 

	 Directional preference of nitrogen- pyramidalization 

of non-planar amides has been little discussed so far, probably 

because amides with a distinct non-planar ground state are 

too unstable and the magnitude of non-planarity of protein 

and peptide amides is only marginal. We confirmed that 

bicyclic β-proline derivatives were a good structural platform 

to observe such effects.

Creation of Chemical Structures Aimed for Drug Design, 
Facilitated by Efficient GPU Computing

Fig. 4   Hydrogen bonding control of pyramidalization 
	 direction of non-planar amide nitrogen atom.

Fig. 5   Non-natural helix structures generated by restricted 
	 amide cis-trans isomerization. 
	 (a) cis - amide helix. (b) trans - amide helix.
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takes a left-handed helical structure.  The helix has about 2.7 

residues per turn and 4.2Å rise per residue.  These parameters 

are different, but not much, from the case of PPII (3 residues 

per turn and 3.1Å per residue). This is also different from the 

structure of the cis-amide type oligomer substituted at the C4-

bridgehead position (Figure 5(a)); the (S)-oligomer take a left-

handed cis-amide helix with about 4 residues per turn and 

a 2.2Å rise per residue (Figuer 6). These structural features of 

these artificial helix allow us to utilize short oligomers as new 

scaffolds for create modulators of protein-protein interaction 

(PPI) (unpublished data).

Fig. 6   Comparison of non-natural cis -amide helix 
	 and naturalα -helix.

Fig. 7   Structure of bioactive lipid mediator, 
	 lysophospahtidyserine (LysoPS) and
	 glycerol analogues.
	 Planarity is crucial for subtype selectivity.

Medicinal chemistry of 
lipid mediators 3
3.1  Conformational constrain in lipid mediator 

Lysophosphatidylserine (LysoPS), which is derived from 

phosphatidylserine by enzymatic deacylation, has lipid 

mediator-like actions, and induces multiple cellular responses 

both in vitro and in vivo, including mast cell degranulation, 

neurite outgrowth in PC12 cells, suppression of proliferation 

of T lymphocytes, migration of fibroblasts and tumor cells and 

engulfment of apoptotic cells by macrophages (Figure 7).

	 Recent studies to find ligands of orphan G-protein-

coupled receptors (GPCRs) identified three LysoPS-specific 

receptors, namely P2Y10 (LPS2), A630033H20 (LPS2L, (LPS2-

like)) and GPR174 (LPS3) in addition to the previously identified 

LysoPS receptor (GPR34 (also known as LPS1)). Orthologs of 

GPR34, P2Y10 and GPR174 have been found in human, mouse, 

rat and zebrafish, and they respond to endogenous LysoPS with 

EC50 values at submicromolar level. Therefore, there appear 

to be three LysoPS receptors of pharmaceutical significance. 

We designed and synthesized a number of conformationally 

constrained LysoPS analogues by embedding the glycerol 

moiety into 2-hydroxymethyl-3-hydroxytetrahydropyran and 

related skeletons (Figure 7), and we examined the selective 

receptor-activating ability of the resulting derivatives[10-14]. 

We have discovered that lysophosphatidylserine analogues 

containing the conformationally constrained glycerol show 

potent and selective activity towards GPR34 and P2Y10. 	

	 Comparision of saturated and unsaturated cyclic 

and benzene analogeus of the glycerol moiety showed that 

compounds, which include increased planarity of the ring 

moiety, have more potent agonistic activities toward P2Y10 

than that of compound which bears a saturated ring structure 

as a glycerol moiety[12], which means that ring planarity is 

probably involved in the agonistic activity for P2Y10 and 

GPR34 with potency and receptor selectivity (Figure 7). 

Molecular simulations will provide supporting insight for the 

proposed idea.
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[10]	 Synthesis and Evaluation of Lysophosphatidylserine 

Analogs as Inducers of Mast Cell Degranulation. Potent 

Experimental chemists are now forced to change their 

molecular views as molecules are now regarded to have free 

energy-based pictures and molecular movements (trajectories). 

New chemical structures are crucial for new functions such as

biological activities which are relevant to drug discovery. These 

questions how we can a priori create new chemical structures 

and how we can define the structures in solution are not new, 

but have been longstanding. While sampling methods of 

conformation space and parameterization of force fields need 

to be improved, time-efficient GPU computation can realize 

the world in which such calculations become indispensable 

tools in experimental laboratories. These situations remind 

experimental chemists of the deep consideration of what 

is “similarity of structures” and how to do a priori structural 

hopping, which may lead to solve the question “how to 

create new chemical structures”. Intensive collaborations 

of computational/informatics/IT scientists and structural 

biologists with experimental chemists are key for further 

development. Very recently we witness such collaborations 

which is so powerful to understand molecular mechanism of 

the biological events [13,14].
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International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the 
international arena. We promote international research collaborations using 
TSUBAME between researchers of Tokyo Institute of Technology and overseas 
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude 
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint 
research to ensure that the proposed research meet academic qualifications 
and contributions to international society. Overseas users must observe 
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s 
researcher as part of research collaboration. The results of joint research are 
expected to be released for academic publication.


