Excel でグラフを書く

Excelを用いると、データの解析やグラフの作成が容易に行えます。ここでは、電磁波の干渉縞の実験を例にとって、表計算とグラフ 作成の手順を紹介します。ぜひ、授業や実験の解析に活用してみてください。

▋ 題材とする実験の説明

グラフの題材として、図1のように幅dの複スリッドを通っ た2つの電磁波が、半径Rの円形スクリーン上に作る干渉縞の 様子を計算することを考えていきます。そしてここでは図2の ような干渉縞のグラフを作ることを目標とします。一見難しそ うですが、高校物理で習ったヤングの実験の発展版と捉えると 理解しやすいと思います。

これから説明する手順通りに進めていけば、Excel 初心者で も同じグラフを作れるようになるので、ぜひ挑戦してみましょ う!

図3この実験での変数の設定

▋ グラフを作成するまでの見通し

ここでは、電界強度の求め方について説明します。

計算で使う数式について

Science Tokyo

Study Tips vol.12

まず、電磁波の干渉の計算で使う数式について軽く説明して いきます。大学1年生では学習していない内容で、**Excelの使** い方には直接関係ないので、「そういうものなのか」という程 度の認識で大丈夫です。

角度 θ の方向に、距離Rだけ離れた場所に生じる、電界の強度|E|/Aは、オイラーの公式 ($e^{i\theta} = \cos \theta + i \sin \theta$)を使って

$$|E|/A = |E_1 + E_2| = \left| \left(\frac{e^{-ik_0 R_1}}{R_1} + \frac{e^{-ik_0 R_2}}{R_2} \right) \right|$$
(1)

$$\begin{pmatrix} R_1, R_2 : 各スリッドからの距離 \\ k_0 : 電磁波の波数 = 2\pi/\lambda \\ A : 定数 \end{pmatrix}$$

で表されます。この|E|/Aを $-90^{\circ} \le \theta \le 90^{\circ}$ について計算し、グラフにすると干渉縞が現れることが確認できます。

式は難しいですが、k₀とAの値は定数なので、R₁とR₂がθに よってどのように変化するのかを求めれば、|E|/A が求められ るということになります。そして、R₁とR₂は直接求めるのが 大変なので、図3のように定めた、dx,dy,dy1,dy2を使って求 めることを考えます。

変数dx, dy, dy1, dy2 はそれぞれ幾何的な関係から、

$$\begin{aligned} &x = R\cos\theta \qquad (2)\\ &y = R\sin\theta \qquad (3) \end{aligned}$$

$$ay = K \sin \theta \qquad (3)$$

$$dy1 = dy + \frac{\pi}{2} \tag{4}$$

$$dy2 = dy - \frac{a}{2} \tag{5}$$

のように表すことができます。

そして、 $R_1 \ge R_2$ はdx, dy, dy1, dy2を使うと、

$$R_1 = \sqrt{dx^2 + dy 1^2}$$
$$R_2 = \sqrt{dx^2 + dy 2^2}$$

のように表すことができます。

ここまでの|E|/A を求める流れを整理すると、まず変数

*dx,dy,dy*1,*dy*2を求め、それを使って*R*₁,*R*₂を求め、最後に公 式から|*E*|/*A*を求めれば良いということが分かりました。

1

それでは次に、この計算を Excel 上で行っている様子を見てみましょう。

図4作成する表の全体像

具体的な Excel の使い方は次の項目から説明していきますが、図 4 中の①で設定した変数 θ をもとに、②の途中過程で $dx_{,dy,dy1,dy2,R_1,R_2}$ を求めていき、それらを使って最終的に③の結果を求めています。

ここまでで前提となる話は終わりです。では、具体的な Excel の使い方について見ていきましょう!

■ 定数の準備

ここでは、計算の際に必要となる定数の取り扱いについて説 明します。

半径Rやスリット間の長さd、波数の値koなど、計算に使用 する定数は中央の表とは別に図5のようにまとめて、図4のよ うに左上などにまとめて用意しておきます。こうすることで、 後で定数の値を変える時になどに分かりやすくなります。さら に、後で説明する絶対参照をするときも見やすくなります。ま た、虚数単位の出し方もここでは説明していませんが、後で説 明するのでここでは気にせず進んでください。

	А	В
9		
10	虚数単位	-i
11	R (m)	0.49
12	d (m)	0.075
13	k0 (1/m)	220.4626

図 5 定数の準備

🔹 変数 θ を準備(オートフィル機能)

ここでは、図 4 中の①のように、-90 から 90 まで 1deg 刻 みに変化する変数 θ の値を用意する方法について説明します。

-90 から 90 まで 0 を 1 つ 1 つ手で入力していくのは非常に 大変なので、オートフィルと呼ばれる機能を使って図 6 に示す ように、以下の手順に沿って進めていくことで、半自動的に入 力することができます。 ① セルに-90、-89と入力し、白い十字のカーソルで2つのセルを選択

② カーソルをセルの右下の端に持ってきてカーソルを黒い +字にする

③ そのまま下にドラッグしていくと、選択したセル内の数字の関係性から自動的に次の値が入力される

①-90から-89まで ドラッグして選択	②カーソルを ▶ 黒十字にする	③+90になるま ドラッグする	で
θ (deg)	θ (deg)	θ (deg)	θ (re
ட ு -90	-90	-90	-1
-89	-89	-89	-1.
	+		9 .3
			1-88

図6オートフィル機能による補完

ここでは、ドラッグによってオートフィルを行いましたが、 隣の列に既にデータが入っている場合、黒十字になった時にダ ブルクリックすることで隣の列に合わせてオートフィルが実行 されます。

また、-90 から90 の連続データを作成する際、データ数が 180 程度しかなかったので、ドラッグでオートフィルを行いま したが、 [ホーム] タブの [編集] グループにある [フィル] から「連続データの作成」を利用すると、巨大な連続した数も 簡単に扱うことができます。この機能の詳しい使い方について は「Excel 連続データ」などで検索して調べてみてくださ い。

θ(rad)を求める(セルに数式を書く)

ここでは、先ほど作成した-90から90までの変数*θ*の単位 を deg から radian 単位に直す操作を説明します。ですが、そ れをするためには、Excel での「簡単な計算方法」、「参照機 能を用いた計算方法」、「関数を用いた計算方法」について理 解する必要があるので、それらを先に説明していきます。

簡単な計算

Excel にはセルに文字や数値を入れるだけでなく、数式を記 述して計算させる表計算機能があります。数式を書くにはセル 内を「=| で始めて、数式を入力する必要があります。

参照機能を用いた計算

数式では数値だけでなく、他のセルの値を代入することもで きます。例えば図8のように、A列1行、A行2列、A行3列 のセルにそれぞれ、2、5、8という数字が入っている場合に、 A行4列のセルに「=A1+A2+A3」と入力すると、A行4列の セルには「=2+5+8」という計算の結果が入力されます。この 機能は、"参照"と呼ばれており、よく使うので、後で詳しく説 明します。

関数を用いた計算

平方根や三角関数を用いるには、Excelの関数機能を使用し ます。関数は、「"関数名"("引数")」の形で使います。例え ば、 $\sqrt{10}$ は「SQRT(10)」のように表現されます。

以下の表は、主な演算子と関数の使用例です。これ以外に も、様々な関数が用意されているので、必要に応じて Web で 調べてみましょう。

表1 演算子の表記例

演算子	入力例	数学的表現		
加算 +	=1+1	1+1		
減算 -	=2-1	2 – 1		
乗算 *	=3*3	3 × 3		
除算/	=4/2	4 ÷ 2		
べき乗 ^	=2^10	2 ¹⁰		

表2 関数の表記例

関数	入力例	数学的表現
平方根 SQRT	=SQRT(10)	$\sqrt{10}$
三角関数 SIN,COS,TAN (引数の単位はラジアン)	=SIN(PI()/2) =COS(0) =TAN(PI())	$sin(\pi/2)$ cos(0) $tan(\pi)$
指数関数 EXP	=EXP(2)	<i>e</i> ²
対数関数 LOG	=LOG(10,2)	log ₂ (10)

単位を deg から radian に直す

ここでは角度の単位を、deg から radian に変換するので、 deg の値を radian の値に変換する関数である「RADIANS」を 使用します。今回は図9で示すように以下の手順で進めます。

 B列17行目に「=RADIANS(A17)」と入力して、隣のA 列の deg 単位の θ の値を参照して radian 単位に変換する

② 黒十字カーソルにしてドラッグすることで、オートフィ ル機能を利用して残りの deg 単位の θ を radian に変換する

③ A列で-90deg から 90deg まで作った θが、B列目で radian の単位に変換された

□ 「=RADIANS(A26)」と入力 ■ ² 黒十字カーソルで ■ ③ オートフィル結果

			· .	ra (ryyy y	
B17	$[\mathbf{v}] = \begin{bmatrix} \mathbf{v} & \mathbf{v} \end{bmatrix} : \begin{bmatrix} \mathbf{v} & \mathbf{v} & \mathbf{f} \mathbf{x} \end{bmatrix}$	=RADIANS	(A17)		
	A	В		В	В
16	θ (deg)	θ (rad)	dx	θ (rad) c	θ (rad)
17	-90	പ്പ് -1.5708		-1.5708	-1.5708
18	-89				-1.55334
19	-88				-1.53589
20	-87				-1.51844
21	-86				-1.50098
22	-85				-1.48353
00			_		

図9関数とオートフィル機能を使って単位を変換

d*x*, dy を求める(相対・絶対参照)

相対参照と絶対参照について

Excel の参照機能には、相対参照と絶対参照の2種類があります。先ほどまで使っていた参照は相対参照に分類されますが、ここでは 絶対参照も使っていきます。そのため、まずはその2つの違いについて説明していきます。2つの違いは以下の通りです。

・相対参照:セル番号をそのまま入力。オートフィル機能によって**変化する。**変数の参照に用いる。

入力例:B11

・絶対参照:行列番号の前に\$を付けることで、オートフィル機能によって変化しない。定数の参照に用いる。

入力例: \$B11 (列のみ固定する場合)、 B\$11 (行のみ固定する場合)、 \$B\$11 (行列とも固定する場合)

(絶対参照は\$マークを毎回入力するより、Windowsの場合は F4 キーを使った方が楽にできます。)

dx とdy を求める

それでは実際に、実際に相対参照と絶対参照を使い分けてdx とdy を求めてみて、それぞれの違いについての理解を深めましょう。 dx とdy はそれぞれ、式(2)と式(3)から、 $dx = R\cos\theta$ 、 $dy = R\sin\theta$ と表されますが、R は定数であり参照先が変化しないので絶対参 照し、 θ は変数で参照先が変化していくので相対参照します。

ここで R を相対参照としてしまうと、図 10 のように、オートフィル機能によって参照先 B11 が B12,B13,B14・・・と変化してしま います。

C1	17 🝷 :	$\times \checkmark$	<i>f</i> _x = B11	COS(B1	7)		C	18 🝷 :	$\times \checkmark$	<i>f</i> _x = B12	COS(B1	.8)
	А	В	с 🛉	D				A	В	С	D	
10	-1×虚数単位	-i					10	-1×虚数単位	-i	•		
11	R (m)	0.49	先ほど同	じように			11	R (m)	0.49	参照先か	「移動し	.τ
12	d (m)	0.075	相対参照に	こした場合	合	オートフィル機能で	12	d (m)	0.075	L	きった	
12	u (III)	0.075			_	補完すると	13	k0 (1/m)	220.4626			
13	KU (1/m)	220.4626					14					
14						•	15					
15							16	θ (deg)	θ (rad)	dx	dy	dy
16	θ (deg)	θ(rad)	dx	dy	dy		17	-90	-1.570796	3.00161E-17		Г
17	-90	-1.570796	3.00161E-17				18	-89	-1.553343	0.00130893		Γ
18	-89	-1.553343					19	-88	-1.53589	7.694033782		
19	-88	-1.53589					20	-87	-1.518436	0		
20	-87	-1.518436			Γ		21	-86	-1.500983	0		

そのため、オートフィル機能で変化しないように、図 11 のように「絶対参照」とすることに注意が必要です。絶対参照とした場合、 オートフィル機能を使っても参照先が変化しなくなります。

C	.7 - :	× 🗸	<i>f</i> _x =\$B\$	11*COS(B17)		C	18 👻 :	× 🗸	<i>f</i> _x =\$B\$	11*COS(B18)
	А	В	С	D	E			A	В	С	D	E
10	-1×虚数単位	-i					10	-1×虚数単位	-i			
11	R (m)	0.49	\$を付けて	絶対参照	に		11	R (m)	0.49	セルがる	いわって	ŧ ,
12	d (m)	0.075	した	場合			12	d (m)	0.075	変化し	ていない	Ň
13	k0 (1/m)	220.4626				オートフィル機能で	13	k0 (1/m)	220.4626			
14						補元すると	14	正常な値が	が出ている	5		
15							15					
16	θ (deg)	θ (rad)	dx	dy	dy1		16	θ (deg)	θ (red)	dx	dy	dy1
17	-90	-1.570796	3.00161E-17				17	-90	-1.570706	3.00161E-17		
18	-89	-1.553343					18	-89	-1.553343	0.008551679	Ŋ	
19	-88	-1.53589					19	-88	-1.53589	0.017100753	T	
20	-87	-1.518436					20	-87	-1.518436	0.025644619		

図 11 絶対参照を使って補完した結果

■ dyと R₁を求める

ここでは dy1 と R₁ の値を計算します。dy1 と R₁の数学的表 現は表 3 中央で示すようになります。そして、dx,dy,dy1はそ れぞれ C,D,E 列 17 行目にあり変数なので相対参照するのに対 し、dは B 列 12 行目にあり定数なので絶対参照します。その ため、これまでに学んだことを利用すると、それぞれの数学的 表現に対応する Excel 表記は表 3 右のようになります。

表 3 dy1 とR₁の数学的表現と Excel 表現

求める値	数学的表現	Excel表現
dy1	dy + d/2	= D17 + B12/2
<i>R</i> ₁	$\sqrt{dx^2 + dy1^2}$	$= SQRT(C17^{2} + E17^{2})$

このようにして実際に計算すると以下のようになります。

図 12 R₁を計算した結果

同様にdy2, R_2 も dy2 = dy1 - d, $R_2 = \sqrt{dx^2 + dy2^2}$ から求めておきます。

■ exp(ik₀R₁)/R₁ を求める(複素数の計算)

ここまでで、式(1)に代入するための、 R_1 , R_2 を求めることができたので、ここでは式(1)の一部である $\exp(-ik_0R_1)/R_1$ の値を計算します。複素数を含む計算であるため、「Excel での複素数計算の基本」を説明した後で、実際の計算方法について説明します。

Excel での複素数計算の基本

複素数は COMPLEX 関数を用いて、「COMPLEX(実数,虚 数) = 実数 + 虚数」と表現することができます。表記を見やす くするため、定数欄に COMPLEX(0,-1) として虚数 -i などを 作っておくと良いでしょう。

B10	Ŧ	:	\times	~	$f_{\mathcal{K}}$	=COMPLE	EX(0,-1)
	А		E	3	С	•	E
10 -1×店	数単位		-i		0+	i*(-1) = -	iとなる

図13 虚数単位の準備

そして、複素数の計算をする際は、通常の関数に虚数 (imaginary)の頭文字 IM を付けた関数を用います。実際に、 複素数*a*,*b*を四則演算するときは、表4のような関数で置き換 えます。

表4 複素数計算の表記

複素数の計算	Excelでの書き方
加算 <i>a</i> +	=IMSUM(a,b)
減算 <i>a</i> − <i>b</i>	=IMSUB(a,b)
乗算 a × b	=IMPRODUCT(a,b)
除算 a/b	=IMDIV(a,b)
指数関数 e ^a	=IMEXP(a,b)

 $exp(ik_0R_1)/R_1$ を求める

そして、実際に $\exp(-ik_0R_1)/R_1$ を計算すると、図 14 のようになります。定数 $-i, k_0$ は絶対参照、変数の R_1 は相対参照とすることに 注意してください。 $\exp(-ik_0R_2)/R_2$ も同様に求めます。

G	17 - :	×	f _x =	IMDIV(II	MEXP(IM	PRODUCT(\$B	\$10,\$B\$13,F17)),F17)	
	А	В	С	D	E	F	G	
10	-1×虚数単位	-i					I	
11	R (m)	0.49			exp(-	$-i \cdot k_0 \cdot R_1$)/R1 という数式を	
12	d (m)	0.075	IMDIV	[IMEXP	{IMPRO	DUCŤ(-i,kĺ	,R1)},R1] という構造で表している	5
13	k0 (1/m)	220.4626						
14					「実	数 + 虚数」と	: 複素数の値が出力されている	
15								
16	θ (deg)	θ (rad)	dx	dy	dy1	R1	exp(-ik0 R1)/R1	0
17	-90	-1.570796	3E-17	-0.49	-0.4525	0.4525	1.58402021704245+1.54101776633437i	ſ
18	-89	-1.553343	0.008552	-0.48993	-0.45243	0.452506185	1.58609823966434+1.53883549386816i	Γ

図 14 $exp(ik_0R_1)/R_1$ の計算

■ 最終結果|E|/A を求める

ここでは、これまでに計算した値を用いて、式(1)から電界強度|*E*|/*A*を計算します。複素数の加算には IMSUM 関数、絶対値には IMABS 関数を用いると表 5 のような表記になります。

表 5 E /A の数子的表現と EXCel 表記									
	数学的表現	Excel表記							
<i>E</i> / <i>A</i>	$\left \left \left(\frac{e^{-ik_0 R_1}}{R_1} + \frac{e^{-ik_0 R_2}}{R_2} \right) \right \right $	=IMABS(IMSUM(G17,J17))							

1 + ----

▌ 結果をグラフにする

 θ と |E|/A の関係を表すグラフを作成します。グラフを挿入 するには次の①~⑤の操作を行います。

 「 θ (deg) 」の行を -90° から 90° まで、マウスのドラッ グ操作で選択する。

② ①の選択が残った状態で、Ctrl キー(Mac の場合 cmd キー)を押しながら「|E|/A」の行を同時に選択する。

④ 散布図から「散布図(直線)」を選択

 ⑤ グラフのデザインタブからタイトルと軸ラベル(グラフが 複数ある場合は凡例も)を追加し、内容を編集する。

図 15 グラフのデータ選択

図 16 散布図の作成

図 15 の①、② の操作でx 軸、y 軸に対応するデータを指定 しています。

実験データをプロットしたい場合は、図 16 の④のように、 散布図をよく使用します。作りたいグラフに応じて散布図以外 のグラフを選択することもできます。⑤のタイトル、軸ラベ ル、凡例は、レポートなどにする場合必須ですので、図 17 の ようにしてグラフの体裁を整えるようにしましょう。グラフの 詳しい書き方については「Science Study Tips vol.11 物理学実 験のグラフの作り方」を参考にしてください。

図 17 散布図の作成

■ まとめ

ここまで読んでいただきありがとうございました。初めて Excel を触る人にとっては難しい箇所もあったと思いますが、 お疲れ様でした!

今回は電磁波の干渉のシミュレーションを例に様々な関数を 紹介してきましたが、Excel には他にも便利な関数や機能、シ ョートカットなどが数多くあります。このハンドアウトで Excel について興味を持っていただけたら、次は自分の実験の シミュレーションや結果の分析に応じて、自分で使い方を調べ てみましょう。そうすることで、自分に合った Excel の便利な 機能をさらに知ることができ、さらに効率的にレポートを仕上 げることができようになるはずです!