Tokyo Tech News

Opening a New Frontier: PdMo Intermetallic Catalyst for Promoting CO2 Utilization

RSS

Published: April 14, 2023

h-PdMo, a recently discovered catalyst, can convert carbon dioxide (CO2) into useful methanol at room temperature and low-pressure conditions, as demonstrated by researchers at Tokyo Tech. This novel compound, which is thermally and chemically stable in air, represents a new milestone in CO2 conversion via hydrogenation and could be key to slow down climate change.

Opening a New Frontier: PdMo Intermetallic Catalyst for Promoting CO2 Utilization

Being the most abundant and persistent greenhouse gas emitted, carbon dioxide (CO2) is the key driver of climate change. To address the pressing problems associated with climate change and fossil fuel depletion, scientists are looking for viable solutions that can minimize the amount of CO2 released into the atmosphere. One attractive solution to this problem is to convert atmospheric CO2 into more useful compounds. Towards this end, methanol - a raw material, fuel additive, and energy carrier, is widely being explored as a promising conversion option for CO2.

Now, while various catalysts are currently used for CO2 conversion reactions, most of them were designed and investigated for use in high-temperature and -pressure conditions. This is a serious limitation for multiple reasons. First, maintaining such conditions requires energy and expensive containment systems. Second, the CO2 hydrogenation reaction is exothermic, and thus proceeds more favorably at lower temperatures. Third, high temperatures can sometimes compromise the stability of catalysts, resulting in their reduced lifespan. Finally, the conversion efficiency of existing heterogenous catalysts is extremely low for catalyzing such conversion reactions.

Against this backdrop, a team of researchers led by Professor Hideo Hosono from Tokyo Institute of Technology, Japan, set out to develop a better catalyst for CO2 hydrogenation. In their study published in the Journal of the American Chemical Society, they report the development of a novel intermetallic catalyst synthesized via a simple ammonolysis process by combining palladium (Pd) and molybdenum (Mo).

To synthesize this catalyst, the researchers employed a simple approach based on ammonolysis of an oxide precursor. Put simply, ammonolysis can be used to combine metals by mixing precursors, such as oxides or nitrates, with ammonia gas at high temperatures. Ammonia reacts with the precursors to form intermediate complexes called metal amides, which then decompose to form the desired intermetallic compound.

Using various analytical techniques, the team determined the crystal structure of the "h-PdMo" catalyst and probed its chemical and thermal stability. Notably, they found that h-PdMo was stable at temperatures up to 400 ℃ and did not decompose in air. "This kind of robustness is very important when considering the practicality of a catalyst," remarks Prof. Hosono.

Next, the researchers evaluated the performance of h-PdMo for CO2 hydrogenation under different conditions. At a temperature of 100 ℃, the catalyst was capable of continuous methanol production without any significant sign of degradation, for over 100 hours. Moreover, at room temperature (25 ℃) and under relatively low pressure, the performance of h-PdMo was remarkable. Explaining the findings further, Prof. Hosono says, "At a pressure of 0.9 MPa, our catalyst achieved a conversion efficiency comparable to or even higher than that of state-of-the-art heterogeneous catalysts, that demonstrate similar turn over efficiency under higher-pressure conditions in the range of 4 to 5 MPa."

In summary, the researchers developed a very active and stable catalyst for CO2 hydrogenation at room temperature that can be synthesized via a simple process. Prof. Hosono concludes by saying, "Our discovery provides a frontier for catalyst development, not only for low-temperature methanol synthesis and CO2 conversion reactions, but also for other reactions catalyzed by Pd."

Here's hoping that further advancements in this field help us accelerate the recovery of useful chemicals from CO2 and put a full stop to climate change!

Reference

Authors :
Hironobu Sugiyama1, Masayoshi Miyazaki1, Masato Sasase1, Masaaki Kitano1,2*, and Hideo Hosono1,3*
Title :
Room-Temperature CO2 Hydrogenation to Methanol over Air-Stable hcp-PdMo Intermetallic Catalyst
Journal :
Journal of the American Chemical Society
DOI :
Affiliations :
1MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology
2Advanced Institute for Materials Research (WPI-AIMR), Tohoku University
3International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)

* Corresponding authors’ emails: kitano.m.aa@m.titech.ac.jp, hosono@mces.titech.ac.jp

School of Materials and Chemical Technology

School of Materials and Chemical Technology
—Encompassing the Disciplines of Science—

Information on School of Materials and Chemical Technology inaugurated in April 2016

School of Materials and Chemical Technology

Schools, Departments, and Institute for Liberal Artsouter

Further Information

Professor Hideo Hosono

MDX Research Center for Element Strategy
International Research Frontiers Initiative, Tokyo Institute of Technology

Email hosono@mces.titech.ac.jp

Contact

Public Relations Division, Tokyo Institute of Technology

Email media@jim.titech.ac.jp
Tel +81-3-5734-2975

RSS