東工大ニュース
東工大ニュース
公開日:2024.09.13
東京工業大学 物質理工学院 材料系の山口晃助教、宮内雅浩教授、An Niza El Aisnada(アン・ニザ・エル・アイスナダ)大学院生(博士後期課程)、同 地球生命研究所(ELSI)の中村龍平教授(理化学研究所チームリーダー)、海洋研究開発機構の北台紀夫主任研究員らの研究チームは、多様な複合金属硫化物[用語1]を用いた二酸化炭素の電解還元[用語2]において、重回帰分析[用語3]や分類といった機械学習の手法を用いて従来よりも簡便な触媒設計の指針を見出した。
温室効果ガスである二酸化炭素(CO2)を削減・利用する技術の開発が望まれる中、電解還元によりCO2を他の物質に変換する手法に注目が集まっている。電解還元の際の電極にどの材料を用いるか、という点は変換効率などに関わる重要な研究課題であり、長年にわたり材料検討が進められてきた。中でも、金属硫化物はスケーリング則[用語4]からの脱却という観点から二酸化炭素変換電極として期待されているが、明確な設計指針は確立されておらず、より簡便なパラメータに基づく電極設計の指針が求められていた。
今回の研究では、18種類の金属硫化物を電極として用いてCO2の電解還元反応を行い、電流効率を比較するとともに、一酸化炭素(CO)生成の選択性を決めるパラメータ解明のために重回帰分析を実施した。結果として、複合金属硫化物を用いた二酸化炭素変換では、一酸化炭素を得る上では構成元素よりも結晶系[用語5]に着目した触媒設計が必要であることが示唆された。本研究成果は、金属硫化物という自然界に普遍的に存在する材料を用いた二酸化炭素変換触媒の開発の一助となることが期待される。
本研究成果は、9月13日(現地時間)付の「Materials Science & Engineering R」に掲載された。
二酸化炭素(CO2)をはじめとする温室効果ガスの排出量と吸収量を均衡させるカーボンニュートラルの重要性が叫ばれる昨今、排出されたCO2を有効利用する技術がより強く求められている。その手段の一つとして注目を集めているのが、再生可能エネルギーなどで発電した電力を用いた電解還元により、CO2を原料に有用な化学物質をつくり出す電気化学[用語6]的なCO2の還元である。この電解還元によるCO2変換については、金属電極の種類をはじめ100年以上も研究が進められているにも関わらず、いまだ発展途上の技術であり、新たな電極材料群の開発が必要とされている。
CO2の還元では、一酸化炭素(CO)やメタン、ギ酸など、さまざまな生成物が得られるため、これらの生成物の比率を上手にコントロールしていくことが、還元の活性を高める鍵であると考えられてきた。電解還元によるCO2変換を行おうとする際、電極に銅(Cu)などの単一元素からなる金属を用いると、最終生成物に至る際に経由する化学種(中間体)のエネルギーを最適化する際に、スケーリング則によって触媒設計の自由度が制限されるという課題が存在する。スケーリング則による制約を解決し得る材料群として、複数の反応サイトを有する金属硫化物に注目が集まっている。
また、金属硫化物は鉱物として広く海底に存在しているために、その二酸化炭素変換のメカニズムを調べることは、「海底での炭素変換によって生命が誕生した可能性」に関する検討の足掛かりとして、生命起源の観点から地球科学の分野においても研究が行われている。しかしながら、二酸化炭素変換材料としては歴史が浅く、有効な二酸化炭素変換電極として明確な設計指針は得られていなかった。特に、従来の触媒開発においては「中間体の吸着エネルギー」のような負荷の高い計算が必要なパラメータが設計指針として提示されており、より簡便なパラメータを提示できれば、触媒開発がより効率化するものと期待できる。
そこで本研究では、2つの金属を含む複合金属硫化物を用いたCO2還元では、どのような物性パラメータが活性を決めているのかを、実験及び計算科学の手法を用いて明らかにし、より簡便なパラメータに基づく電極設計の指針を獲得しようと試みた。
本研究ではまず、検討対象として18種類の複合金属硫化物を合成し、それらの電気化学的な二酸化炭素変換活性を実験により調べ、一酸化炭素(CO)生成に対する電流効率[用語7]を測定した(図1)。その結果、サンプルごとに活性が異なり、特にZnIn2S4を用いた場合には90%以上ものCO生成効率が達成された。
続いて、複合金属硫化物上におけるCO2からのCO生成の選択性を決めるパラメータを解明すべく、重回帰分析を実施した。
実験により活性度の指標として得られた電流効率のデータを、諸条件の影響を受けて変化する目的変数に設定した。また、キャラクタリゼーションにより特定した構造に対する量子化学計算により得られた、金属硫化物の結合長や格子体積といった「構造的なパラメータ」と、金属硫化物の表面エネルギーやバンド位置といった「電子的なパラメータ」を、電流効率に影響を与えうる説明変数として設定した。その上で重回帰分析を行って、最も係数の大きい、すなわち活性への寄与が大きいパラメータを抽出した。
その結果、CO2をCOへと変換する反応においては表面全エネルギーと格子体積が大きく反応へと寄与していることが見出された(図2)。
続いて、得られた表面全エネルギーと格子体積を基に、既存のデータベースに存在する204個の複合金属硫化物に対してCO生成効率を予測した(図3)。これらを結晶系ごとに分類してみると、六方晶系、三方晶系、単純格子、および菱面体晶系の硫化物が高いCO生成効率を示すことが予測された。
一方で、構成元素ごとに分類してみると、カドミウム(Cd)、インジウム(In)、亜鉛(Zn)を含む硫化物が高いCO生成効率を示すことが予測された。しかしながら、これらを含むCdIn2S4は実際には低い効率を示しており、これはCdIn2S4の格子構造が、活性が低いことが予測される面心立方格子構造であるためだと考えられる。したがって、金属硫化物上でのCO生成では、構成元素よりも結晶系が大きく選択性に影響していることを示唆する結果が得られた。
CO2の削減ならびに資源としての利用は、カーボンニュートラルを達成させる上で解決すべき喫緊の課題である。本研究では、それらを電気化学的に達成可能な新規材料として複合金属硫化物に着目し、その電極触媒としての設計指針を提示した。本研究成果を基に、触媒研究が加速され、将来的な脱炭素社会の実現に近づくことが期待される。
本研究の結果、CO2の有効活用の一手段として注目される金属硫化物を用いたCO2還元について、どのような物性パラメータが活性度に深い関わりを持つかが明らかになった。本研究で提示した設計指針に従うことで、金属硫化物という身近で新たな材料群をベースとしたCO2資源化材料の開発につながると期待される。さらに、本研究で適用したパラメータ抽出のワークフローは複合金属硫化物上でのCO2変換だけでなく、他の反応系・触媒系にも適用可能であることが予想され、触媒開発の分野に大きく貢献することが期待できる。
付記
本研究は、科学研究費助成事業 学術変革領域研究(A)「CO world: CO環境の生命惑星化学」計画研究課題(22H05153)の助成により行われた。
用語説明
[用語1] 複合金属硫化物 : 硫黄(S)と、金属元素とが化合した物質の中でも、複数の金属を含むもの。
[用語2] 電解還元 : 電解質の水溶液に一対の電極を入れて電流を流し、電極面に化学変化を起こさせる電気分解(電解)において、マイナス極(陰極)側では還元反応が起こる。この還元力を利用して物質合成を行う方法。電極の材質や電流の密度、温度などの条件により還元力を調整でき、各種化合物の合成に広く用いられる。
[用語3] 回帰分析 : ある変数の動きが、ほかの変数の動きとどのような関係にあるかを推定するための統計学的手法。同じ実験から得られた別種の観測値などを同時に解析し、変数同士の関係などを調べる多変量解析の一つ。重回帰分析は、結果となる変数に対し、原因となる複数の変数を用いた回帰分析。
[用語4] スケーリング則 : ある量のスケール(尺度)を大きくしたり小さくしたりする際に起こる、ほかの量の変化に対する一定の法則。本研究においては、連続した化学反応によって最終生成物が生じる際、反応中間体の吸着様式が類似していることが原因となって、各中間体が持つエネルギーの間に、y=ax+bのような一次式で表される線形関係が存在することを指す。これにより、各中間体のエネルギーを独立に最適化することが困難なため、潜在的な活性化エネルギーが存在することになる。
[用語5] 結晶系 : 物質が持つ結晶構造(周期的な構造)を、対称操作により分類したもの。全32種類に分類される。
[用語6] 電気化学 : 電子のやりとりによる電気現象と、それに伴う化学変化を扱う物理化学の一分野。電池、燃料電池、めっきなどの表面処理、センサーなど多方面に応用され、環境対策の観点からも注目を集めている。
[用語7] 電流効率 : 全体に流れた電流のうち、それぞれの反応に使われた電流の割合。
論文情報
掲載誌 : |
Materials Science & Engineering R: Reports |
論文タイトル : |
An empirical approach-based analysis for the exploration of ternary metal sulfide as an active and selective CO2 reduction electrocatalyst |
著者 : |
An Niza El Aisnada, Yuhki Yui, Ji-Eun Lee, Norio Kitadai, Ryuhei Nakamura, Masaya Ibe, Masahiro Miyauchi, Akira Yamaguchi |
DOI : |
お問い合わせ先
東京工業大学 物質理工学院 材料系
助教 山口晃
Email ayamaguchi@ceram.titech.ac.jp
Tel 03-5734-3368 / Fax 03-5734-3368
取材申し込み先
東京工業大学 総務部 広報課
Email media@jim.titech.ac.jp
Tel 03-5734-2975 / Fax 03-5734-3661
理化学研究所
Email ex-press@ml.riken.jp
Tel 050-3495-0247
海洋研究開発機構 海洋科学技術戦略部 報道室
Email press@jamstec.go.jp
Tel 045-778-5690